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Abstract

Data from environmental DNA (eDNA) may revolutionize environmental
monitoring and management, providing increased detection sensitivity at
reduced cost and survey effort. However, eDNA data are rarely used in
decision-making contexts, mainly due to uncertainty around (1) data interpre-
tation and (2) whether and how molecular tools dovetail with existing man-
agement efforts. We address these challenges by jointly modeling eDNA
detection via qPCR and traditional trap data to estimate the density of invasive
European green crab (Carcinus maenas), a species for which, historically,
baited traps have been used for both detection and control. Our analytical
framework simultaneously quantifies uncertainty in both detection methods
and provides a robust way of integrating different data streams into manage-
ment processes. Moreover, the joint model makes clear the marginal informa-
tion benefit of adding eDNA (or any other) additional data type to an existing
monitoring program, offering a path to optimizing sampling efforts for species
of management interest. Here, we document green crab eDNA beyond the pre-
viously known invasion front and find that the value of eDNA data dramati-
cally increases with low population densities and low traditional sampling
effort, as is often the case at leading-edge locations. We also highlight
the detection limits of the molecular assay used in this study, as well as
scenarios under which eDNA sampling is unlikely to improve existing

management efforts.
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et al., 2017; Thomsen & Willerslev, 2015). Techniques
such as quantitative polymerase chain reaction (qPCR),

Since the first documented use of environmental DNA
(eDNA) methods for detecting macro-organisms (Ficetola
et al., 2008), the fields of conservation and ecology have
seen a wave of eDNA studies, with wide ranging applica-
tions across a myriad of ecosystems and target taxa
(Beng & Corlett, 2020; Bohmann et al.,, 2014; Deiner

digital droplet PCR (ddPCR), and high-throughput
sequencing (HTS) are increasingly accessible, and can
often detect trace amounts of DNA in environmental
samples (Jerde, 2019). These molecular techniques yield
high-resolution biological information and are particu-
larly wuseful when traditional monitoring may be
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infeasible, labor intensive, or reliant upon diminishing
taxonomic expertise (Kelly et al., 2014); in some cases,
eDNA assays are more sensitive than traditional sam-
pling methods in detecting rare individuals (Goldberg
et al., 2013; Jerde et al., 2011). Together, these attributes
make eDNA sampling attractive for detecting rare, cryp-
tic, or elusive aquatic species, and, in particular, invasive
species.

Early detection and monitoring are key components
of successful invasive species management strategies
(Lodge et al., 2006), and detection at early stages of estab-
lishment has led to eradications of nascent invasions
(Anderson, 2005; Wimbush et al., 2009). However, the
effort required to detect a species is inversely propor-
tional to its population size (Hayes et al., 2005), and so
invasion fronts present a particular management chal-
lenge. Historically, cost-effective management strategies
have had to balance high survey costs for small
populations and high eradication costs if the survey fails
to detect an incipient population in the initial stages of
invasion (Lodge et al., 2006). Genetic approaches may
better detect rare individuals, and thereby lower costs
and improve the sensitivity of surveys for small
populations, such as those at invasion fronts (Beauclerc
et al., 2019; Harper et al., 2018; Jo et al., 2021; Kuehne
et al., 2020; Schiitz et al., 2020). However, traditional
monitoring methods outperform some eDNA assays
(Rose et al., 2019; Ulibarri et al., 2017), underscoring the
importance of side-by-side comparisons of detection
efficiency.

Despite the advantages of eDNA for early detection of
small populations, few examples exist of eDNA methods
used to guide decision-making. Notable exceptions
include the United Kingdom’s acceptance of eDNA qPCR
results as evidence for the presence of the protected great
crested newt, Triturus cristatus; there, developers can be
prohibited from developing wetlands where there
have been positive eDNA detections (Biggs et al., 2015;
Natural England, 2017). Perhaps the best example of
management-relevant eDNA surveys focuses on the inva-
sive bighead and silver carps (Hypophthalmichthys spp.;
often referred to jointly in the United States as “big-
headed carp”) (Mize et al., 2019). The US Fish and Wild-
life Service (Woldt et al., 2020) and US Department of
Agriculture (Carim et al., 2016) have protocols that guide
field and laboratory eDNA methods, as well as outline
recommendations for sampling plans and schedules to be
implemented by regional sampling agencies.

Typically, however, methodological development out-
paces systematic plans on how to use DNA evidence to
support management decisions. Consequently, managers
have been slow to use eDNA-based approaches in
decision-making frameworks, (Bohmann et al., 2014;

Darling & Mahon, 2011) due to gaps in understanding
the dynamics of eDNA in space and time, as well as the
susceptibility of eDNA methods to false-negative detec-
tions and false-positive detections (Darling et al., 2021;
Goldberg et al., 2016; O’'Donnell et al., 2017; Sepulveda,
Hutchins, et al., 2020). Although all sampling methods
have potential errors, there are many mechanisms for
eDNA methods to indicate a false presence; the fear of a
false-positive detection is cited as the primary obstacle to
adopting eDNA-based methods in species monitoring
(Jerde, 2019). Even though emerging statistical
approaches have aimed to estimate the probability of
false-positive error (Griffin et al., 2019; Guillera-Arroita
et al.,, 2017), clearly communicating of the meaning of
false-positive errors—and more generally, uncertainty
surrounding the meaning of results—to managers and
the public remains challenging (Darling et al., 2021).

Previous reviews highlight the “potential” of eDNA
methods to dramatically improve biodiversity assess-
ments and targeted detection of species of concern, as
well as the “potential” for unreliability and augmentation
of existing uncertainty in environmental management
and assessment (Beng & Corlett, 2020; Bohmann
et al., 2014; Darling & Mahon, 2011; Yoccoz, 2012). Mov-
ing from evaluating the potential value of eDNA data to
the practical value of eDNA data requires quantitative
and meaningful interpretations of the available data
(Cristescu & Hebert, 2018; Lacoursiére-Roussel &
Deiner, 2021), as well as demonstrating the ways in
which eDNA does—or does not—complement existing
management strategies.

Recent work has significantly advanced eDNA data
interpretation by extending site-occupancy modeling
methods to estimate species presence and absence using
eDNA data (Schmidt et al., 2013). Such models account
for imperfect detection when inferring species occupancy
and can overcome bias introduced by false-negative and
false-positive detections (Hunter et al., 2015; Lahoz-
Monfort et al., 2016; Schmelzle & Kinziger, 2016). Occu-
pancy estimation has become a standard method for
modeling species dynamics, monitoring species trends,
and informing management (MacKenzie et al., 2002,
2003). The approach has been adapted to accommodate
violations of model assumptions (Lele et al., 2012) and
survey scenarios in which multiple types of observational
error occur (McClintock et al., 2010; Miller et al., 2011).

Occupancy models suggest that there are two classes
of sites, those that are occupied and those that are not,
and these models assume no unmodeled heterogeneity
among sites in the probability of detecting a species at
sites where it occurs (Altwegg & Nichols, 2019; Royle &
Nichols, 2003). In reality, variation in local abundance of
the species among sites is one important factor that can
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induce heterogeneity in detection probability with eco-
logical or genetic methods (Royle & Dorazio, 2008),
resulting in low estimates of occupancy probability at
sites where a species is present, but rare. Even for a rela-
tively sensitive assay, a low molecular detection rate can
therefore reflect low abundance, rather than low proba-
bility of occupancy.

Royle and Nichols (2003) aimed to overcome this
limitation by describing a modeling approach that links
heterogeneity in abundance to heterogeneity in detection
probability, estimating abundance from repeated observa-
tions of a species. This heterogeneous detection probabil-
ity model provides a framework for estimating species
density based on abundance-induced variation in
detection probability with eDNA methods (Royle &
Nichols, 2003). Building on this framework, we jointly
modeled observations from both traditional and eDNA
monitoring methods to estimate local species density.
The joint model aided management decisions by info-
rming the interpretation of molecular detections, the
most appropriate use of eDNA sampling efforts, and the
relative sensitivities of molecular and traditional sam-
pling methods.

We applied the joint model to eDNA detection data of
European green crab, Carcinus maenas, in Washington
State, USA. The green crab causes massive ecological and
economic damage in its invaded range; for example, the
species has caused the collapse of the soft-shell clam indus-
try in Maine (Glude, 1955; Tan & Beal, 2015). The green
crab was first detected in Washington waters in 1998, after
warm El Nifio-Southern Oscillation (ENSO) currents
spread larvae of California populations up to British Colum-
bia, Canada (Behrens Yamada & Hunt, 2000), and the spe-
cies is now classified as a deleterious species in Washington
State because of perceived risks to coastal resources (Grason
et al., 2018). The Washington Department of Fish and Wild-
life (WDFW), the United States Fish and Wildlife Service
(USFWS), Washington Sea Grant, several sovereign tribal
nations, and other concerned citizens have subsequently
coordinated to monitor and manage green crab along the
nearly 3000 km of Washington’s inland shoreline.

Traditionally, crab traps have provided much of the
quantitative information about the position of the green
crab’s invasion front in Washington, and the State is
investing heavily in deploying traps throughout probable
invasion pathways. Here, we coupled this existing data
set with qPCR data, using a recently developed assay for
green crab (Roux et al., 2020) derived from water samples
collected throughout the region. We combined these data
streams to estimate the density of green crab across the
study sites using the joint model, and we highlight
changes in the precision of these estimates in the joint
model vs. a model that uses only traditional trapping

data; the difference between the two is the marginal
information benefit of eDNA for this particular manage-
ment purpose. This modeling framework offers a path to
improve interpretation of eDNA data, as well as to iden-
tify the scenarios under which eDNA sampling will most
likely improve existing management efforts.

METHODS
Joint model description

We modeled traditional trap data and eDNA qPCR detec-
tions jointly, linking the two through a shared species
density at each sampling site (Data S1).

Traditional monitoring methods—here, trapping—
relate repeated capture rates to an underlying species
density. As previous work on analyzing green crab cap-
ture in traps found patchy distribution, with significant
local-scale variation within a site (Bergshoeff et al., 2019),
we modeled the capture process using a negative bino-
mial distribution to account for overdispersion. We also
conducted a leave-one-out cross-validation approach to
evaluate the relative predictive accuracy of distribution
choices for modeling the capture process based on the
observed data (Vehtari et al., 2017) (Appendix S1: Data
S2). The observed count, Y, of a species at site i and trap
sample k is drawn from a negative binomial distribution
with a mean species density, y;, and an overdispersion
parameter, @ (Equation 1):

Yy ~ NegBinomial (u; ®) (1)

Guided by the principle that the probability of detection
with qPCR increases as the underlying species density
increases, we describe the probability of a true molecular
detection, p;;, at site i as a saturating function of species
density, y;, and scaling coefficient, § (Equation 2):

Hi
Hi+p @

Pui=
Recognizing the susceptibility of eDNA methods to false-
positive errors (Roussel et al., 2015; Sepulveda, Nelson,
et al., 2020), we incorporated a false-positive probability, p;o,
that represented two sources of false-positive detections:
(1) the presence of target DNA in the sample, but absence of
target organism at the associated site, arising from processes
such as laboratory contamination or transportation of target
cells from far away locations, and (2) absence of target
DNA in the sample but a positive molecular detection,
arising from non-specific amplification. The false-positive
probability, p;g, contributed to the overall molecular
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detection probability, p, at site i (Equation 3; p is bounded
between 0 and 1):

Di=Dyo +P11i (3)

We estimate these parameters through repeated molecular
observations at each site using a species-specific quantitative
PCR (gPCR) assay (Roux et al., 2020). Many applications of
gPCR are interpreted as molecular binary indicators of
detection (1) or nondetection (0) (Guillera-Arroita et al.,
2017; Orzechowski et al., 2019; Schmidt et al., 2013), and
the binomial distribution is suitable for modeling “suc-
cesses” in a given number of trials (Hobbs & Hooten, 2015).
The number of positive qPCR detections, K, out of the num-
ber of trials, N, in water sample j at site i is drawn from a
binomial distribution, with a probability of success on a sin-
gle trial, p; (Equation 4). Due to the hierarchical qPCR data
structure, in which qPCR triplicates are nested within water
bottles within sites, we also provide a hierarchical version of
the model that accounts for membership of qPCR replicates
within nested groups (Appendix S2, Data S3). We present a
simpler model here:

Kj ~ Binomial (N ij,Pi) “)

We implemented the model in a Bayesian framework, in
which the posterior probability of the model parameters
(given observed data) is product of the individual likeli-
hood functions at site i (i in 1...n), water sample j (j in 1...
m), and trap sample k (k in 1..q), as well as the prior
probabilities (Equation 5). A gamma distribution was
used as the prior distribution for parameters y;, @, and
because of its suitability for continuous, non-negative
random variables. These prior distributions allowed us to
incorporate existing information into the analysis and
help to make the parameters identifiable:

n m q . .
o) oc L1 17 T2 NegBinomial(Y )
x Binomial (N j,Kj|p1o. - )
x Gamma (p;|ay, p,) x Gamma(¢p|ag,p,)
x Normal (Plo ltp105 azplo)

x Gamma (flay, ;)

(5)

We specified the model within Stan, a probabilistic pro-
gramming language written in C++ that implements full
Bayesian statistical inference using Markov chain Monte
Carlo, and used the package rstan (version 2.21.2) as an
interface to the R (version 4.1.1) software environment
(Carpenter et al., 2017; Guo et al., 2020; R Development
Core Team, 2021).

Green crab eDNA data collection
eDNA field sampling

In total, 20 sites with varying known presence and abun-
dance of green crab were chosen for eDNA sampling
(Figure 1; Appendix S3: Figure S1) and, given the time
scale of the sampling effort, all sites were distinct with rela-
tion to green crab movement. At each site we collected five
500-ml surface water samples at 1-5 m apart. All sampling
equipment was soaked in 10% bleach among sites and thor-
oughly rinsed in deionized water to prevent cross-contami-
nation. Water samples were placed on ice and vacuum
filtered onto a cellulose acetate filter (47 mm diameter,
0.45 pm pore size) within 4 h of collection, except for sam-
ples from the KVI site, where samples were stored at 4°C
and filtered 24 h after collection due to vacuum equipment
malfunction. Filters were preserved in 900 pl of Longmire
buffer (Longmire et al., 1997; Renshaw et al,, 2015) and
stored at —80°C for 1-3 weeks before DNA extraction. In
total, 100 eDNA water samples were collected.
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FIGURE 1 Environmental DNA and trapping detections of

green crab over the sampling period. Purple dots indicate sites
where green crabs were trapped and eDNA samples yielded at least
one positive detection. Yellow dots indicate sites where no green
crabs were trapped and eDNA samples yielded at least one positive
detection. Gray dots indicate sites where no green crabs were
trapped and eDNA samples yielded no positive detections. Sampled
sites are labeled with the site ID and polygons are colored by
region. The inset map indicates study the location in the context of
the United States. A key for site abbreviations is included in
Appendix S4: Table S2
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eDNA sample processing

We extracted DNA from filters using a phenol:chloroform:
isoamyl alcohol protocol modified from (Renshaw
et al., 2015) and described in (Gallego et al., 2020). One nega-
tive control (900 pl of Longmire buffer) was extracted during
each set of DNA extractions (n = 3 in total). We quantified
DNA purity on a spectrophotometer (NanoDrop, Thermo Sci-
entific, Inc.) and DNA concentration on a fluorometer (Qubit,
Invitrogen, Inc.) to determine DNA extraction success.

Each eDNA extract was amplified by qPCR using a
C. maenas-specific assay developed by Roux et al. (2020)
that targeted a 148-bp fragment of the cytochrome c oxidase
1 (CO1) region. Three qPCR replicates were run for each
eDNA extract in 25-pl reactions following the protocol of
Roux et al. (2020), but we modified the protocol to use
TagPath™ ProAmp™ Master Mix due to its relatively high
tolerance of inhibitors (Applied Biosystems, A30865). Three
negative PCR controls containing 2 pl of molecular grade
water were included in each reaction, and each extraction
negative control was run in triplicate. All gPCR reactions
were performed on the Applied Biosystems StepOnePlus
Real-Time PCR System and analyzed with StepOne Soft-
ware v2.3. Any DNA template passing the fluorescence
threshold in fewer than 38 cycles was considered a positive
amplification, as 38 Ct is the average Ct value corresponding
to the assay’s limit of detection with a 50% chance of detec-
tion (Roux et al., 2020). The identity of 13 qPCR products
from four sites was confirmed through unidirectional
Sanger sequencing with the forward primer; all sequences
were unambiguously C. maenas, and no other crabs from
the same taxonomic family are present in the region
(Appendix S4: Table S1).

In addition to the 20 sites sampled concurrently
with trapping efforts, eDNA samples from seven sites in
Skagit Bay, WA were analyzed using the same sampling,
DNA extraction, and qPCR procedures (Appendix S4:
Table S2). These sites were characterized as unsuitable
for green crab based on expert opinion and were included
as sites of unambiguous crab absence to inform the prior
detection on the estimated probability of a false-positive
molecular detection (p,o). Four water samples at each of
the seven sites were processed at an independent labora-
tory facility (NOAA Northwest Fisheries Science Center),
where each water sample underwent triplicate qPCR
reactions, alongside nine no-template negative controls
and three field blank negative controls.

Inhibition testing

To ensure that negative qPCR detections were not sys-
tematically due to PCR inhibition, we measured potential

inhibition occurrence by analyzing the quantification
threshold (Ct) deviation of a spiked internal positive con-
trol. A synthetic (gBlock) positive control was spiked into
samples with no positive amplifications (Integrated DNA
Technologies, Inc.). The double-stranded 200-bp gBlock
oligonucleotide contained a green crab-specific primer
and probe sequences, with three modified bases between
the forward primer and probe and two modified bases
between the probe and reverse primer to identify contam-
ination at the amplification step. For sites where all
eDNA replicates previously tested negative for green
crab, we subsequently tested one eDNA sample per site
for inhibition. For sites where some but not all eDNA
replicates tested negative for green crab, each previously
negative eDNA sample was tested for inhibition. Each
gPCR reaction used 1 pl of environmental DNA extract
and 1 pl of the gBlock positive control at a final reac-
tion concentration of 0.20 gBlock copies/pl. Three
gPCR replicates containing 1 pl of the gBlock positive
control (without eDNA extract) at a final reaction con-
centration of 0.20 copies/pul were also included in the reac-
tion. Inhibition occurrence was measured as the
difference in Ct, ACt, between the Ct value of the spiked
eDNA sample and the mean of the three positive gBlock
controls (Ctgampie = Cteontror) (Volkmann et al., 2007). We
conservatively considered a ACt greater than two cycles
to be evidence of inhibition, considering that three
cycles—as is common in the literature (Hinlo
et al., 2017)—is almost one order of magnitude difference
in concentration in an efficient reaction. Each DNA sam-
ple underwent 1-3 passes through a OneStep PCR Inhibi-
tor Removal spin column (Zymo Research Corp.) until
inhibition occurrence was not detected (Appendix S4:
Table S3).

Green crab trapping data

The Washington State Department of Fish and Wildlife,
Washington Sea Grant, US Department of Fish and Wild-
life, and Jamestown S’Klallam Tribe provided data from
baited traps from a larger green crab monitoring pro-
gram. Traps were set for an overnight soak and collected
within 24 h of placement; any trapped green crabs were
counted and subsequently removed from the system.
Trap types included in the data set were Gee-brand galva-
nized steel minnow traps (5.08 cm opening, 0.635cm
mesh) and the square Fukui fish traps (1.27 cm mesh),
which have similar catchability for green crab and mech-
anisms of trapping.

The sampling sites varied with respect to known
green crab presence, abundance, and trapping effort
(Appendix S3: Figure S1). Trapping effort ranged from
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three to 420 traps set over the selected trapping period,
and water samples were collected 2 weeks before or
after trap collection, with the exception of the
Stackpole site (STA) (Appendix S3: Figure S2). At STA,
only three traps were set during the sampling period,
and no green crabs were recovered. To reflect the rela-
tively high density of green crab determined through
previous, greater trapping efforts, trapping data at STA
collected at 8 weeks before eDNA sampling were
included in the data set (Appendix S3: Figure S2).
Despite trapped crabs being removed from the system,
our analysis assumed that these removals did not
substantially change the relative densities of green
crab at the sampled sites over the sampling period
(Appendix S3: Figure S2).

Joint model application: Green crab
density estimates

We fitted the joint model to the qPCR and trap observa-
tions using weakly informative priors for all parameters
except for the false-positive rate of detection, p;q, for
which we used an informative prior from the negative
control data listed in Roux et al. (2020) and the eDNA
samples from sites characterized a priori as unsuitable for
green crab. We set the p;o prior at beta(1,28), such that
the false-positive detection probability was likely to be
less than 0.036 (P[pio < 0.036] = 0.64). For ease of
model-fitting in Stan, we moved p,, to a log scale, and
used moment matching to convert the beta prior into a
lognormal distribution (Hobbs & Hooten, 2015). To
reflect prior knowledge of the presence of green crab at
each site beyond the information provided in the trap
data, different hyperparameters were used for the prior
distributions for x4 based on green crab recovery at the
sampled sites from 2017-2021 (Appendix S4: Table S2).
The prior distribution for x4 at sites with a history of
trapped green crab was i, ~ gamma(0.25, 0.25), and
the prior distribution for u at sites without a history of
trapped green crab was ppocrap ~ gamma(0.05, 0.05).
Priors for the other model parameters were as follows:
B ~ gamma(2, 1) and @ ~ gamma(0.25, 0.25).

We ran the joint model via rstan with a step size of
0.5 and 4 chains with 500 warm-up and 2500 sampling
iterations per chain, and we checked for model conver-
gence through the R-hat convergence diagnostic and by
visually examining the resulting autocorrelation plots
and chain mixture in the trace plots using the package
shinystan (Gabry et al., 2018). For comparison, we ran a
trap-only model (Equation 1) in the same way.

As crab density decreases, the probability of true-
positive molecular detection decreases and, at very low

crab densities, the probability of a false-positive detec-
tion, pyo, is higher than the associated true-positive
detection, p;;. Here, we defined the crab density
threshold at which a detection is equally likely to be
true or false (p;o = p11) as the critical crab density,
Heritical- This value was calculated using the model’s
posterior distributions of estimated parameters, p,o and
p, and the relationship between u and p,, defined in
Equation 2.

Robustness assessments

A sensitivity analysis was conducted to ascertain the sen-
sitivity of the model’s inferences to the specification of
the false-positive probability, p,o, prior distribution. The
joint model was refitted using a set value for p, less than
a range of values (0.005-0.055), and all other parameters
(B, D, u;) were estimated. All refitted models were run
with a step size of 0.5 and four chains with 500 warm-up
and 2500 sampling iterations per chain and were checked
for model convergence.

We also examined the effect that priors had on our
inferences by conducting the data-cloning procedure
described by Lele et al. using the package dclone (version
2.3-0) (Data S1) (Lele et al., 2007; Solymos, 2019). We rep-
licated the qPCR and trapping data sets (n = 10) for each
sampled site and used these copies as data input in our
model to swamp the posterior distribution, which subse-
quently minimized the influence of the prior distribu-
tions and yields estimator outputs that are asymptotically
equivalent to maximum likelihood estimators (Lele
et al., 2007). We evaluated the influence of the prior dis-
tributions on our model’s inferences by comparing data
cloning parameter estimates to our Bayesian parameter
estimates.

We then compared our model’s inferences to
parameter estimates derived from an occupancy
modeling framework. We estimated occupancy
parameters using the qPCR detection data and the R
package, msocc (version 1.1.0), which implements a
Gibbs sampler to fit Bayesian multiscale occupancy
models (Data S1) (Stratton et al., 2020). The occu-
pancy model was run with 11,000 total MCMC itera-
tions (1000 burn-in iterations), and site-specific
sample-level probabilities of occupancy, 0;, and site-
specific replicate-level probabilities of occupancy, p;,
were estimated. Replicate-level probabilities of occu-
pancy, Pioccupancy» Were compared with the overall
probabilities of molecular detection, p; joint, from the
joint model, and a linear regression was fitted to
model the relationship between p; occupancy and Pj joint
using the Im() function in R.
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Evaluation of eDNA data’s marginal
benefit

As information increases, uncertainty decreases. We
therefore considered a reduction in uncertainty around
green crab density estimates as a measure of the marginal
value of eDNA data, relative to the baseline information
contained in trap data alone. We quantified precision in
the estimates of green crab density, y;, using a coefficient
of variation (CV; the standard deviation of the parameter
estimate divided by the mean), to facilitate comparisons
of variability across green crab densities of differing
orders of magnitude (Abdi, 2010). We calculated the
change in precision (ACV) in the parameter estimates in
the joint model vs. trap-only model as CVy.p = CVjging,
and we analyzed this change in precision as a function of
trapping effort. The qPCR effort remained constant
throughout data collection. We captured the resulting
exponential trend line in the relationship between ACV
and trapping effort using the method of least squares.

To evaluate the sensitivity of eDNA vs. trap sampling,
we estimated the sampling effort necessary to detect a
green crab with 90% confidence. A detection refers to either
capturing at least one green crab in a trap or producing at
least one true-positive qPCR amplification. For trap sam-
pling, we calculated the minimum number of traps neces-
sary to be 90% confident that at least one crab would be
caught (Equation 1; given a non-zero expected number of
crabs/trap, p, and the model’s median estimate for disper-
sion parameter, @). For eDNA sampling, we defined effort
as the number of unique water samples, each having tripli-
cate qPCR. We calculated the minimum number of water
samples, E, necessary to detect the true presence of crab
with at least 90% confidence as binomial(E x N, p;;), in
which N = 3. p;; was defined as in Equation 2 and depends
upon the underlying true number of crabs/trap, u, and the
model’s median estimate for parameter f. Both sampling
type analyses were conducted under a range of crab densi-
ties, from median pyisica; — 3.0 crabs/trap.

Simulation study

We simulated the precision and accuracy of green crab den-
sity estimates as a function of sampling strategy, given a
range of green crab trapping efforts and true species densi-
ties. Both qPCR data and green crab trap count data were
simulated for each of nine green crab densities (0, 0.02,
0.05, 0.1, 0.15, 0.25, 0.5, 1, 3 crabs/trap [usim]) and 11 trap-
ping efforts (3, 4, 5, 7, 10, 12, 15, 20, 30, 40, 60 traps), for a
total of 99 scenarios. The eDNA sampling effort was held
constant at five biological replicates and three technical rep-
licates for all simulated scenarios. Each scenario made up a

different site, iy, in the overall simulated data set, and we
simulated each data set 50 times to capture stochasticity.
These scenarios represented the range of green crab densi-
ties and trapping efforts observed in this study.

We then used the simulated data sets to estimate the
underlying green crab density, pg,, at each simulated site,
isim» With both the joint and trap-only models. Only parame-
ter pgm for each simulated site was estimated by the two
models, and parameters pq, 3, and @ were set at the joint
model’s median estimate derived from collected data. A
prior distribution for x of gamma(0.05, 0.05) was used at all
simulated sites, and each model was run with four chains of
500 warm-up iterations and 2500 sampling iterations (Data
S4). We calculated the mean change in precision (ACV) of
the 50 simulation replicates at each simulated site to deter-
mine the effect of trapping effort and underlying crab den-
sity on changes in estimated crab density precision. We
calculated model accuracy for each simulation scenario as
the proportion of simulation replicates that yielded a 90%
credibility interval containing the true density, pgim,.

RESULTS

Green crab genetic and traditional
monitoring data collection

We detected at least one positive amplification at 13 sites,
(1-15 amplifications out of 15 total qPCR replicates per
site; five biological replicates x three technical replicates
per site; Appendix S4: Table S3). In a total of 1274 trap
observations (3-420 traps set over the sampling period;
Appendix S3: Figure S2), green crabs were trapped at
nine of the 20 sampled sites over the sampling period
(mean crabs/trap 0-6.04). All nine of these sites had posi-
tive eDNA detections, whereas four additional sites
yielded at least one positive eDNA detection when no
green crabs were trapped over the sampling period
(Figure 1). At two of these four additional sites, green
crabs were recovered in traps over a longer time horizon
(2017-2021) than the extent of the sampling period
(Appendix S4: Table S2). All samples collected at sites
characterized as unsuitable for green crab produced neg-
ative qPCR results, and all no-template (negative) gPCR
controls and DNA extraction blanks produced negative
gPCR results.

Detection of green crab eDNA beyond
known invasion front

Both the joint and trap-only models yielded an R-hat of
one for all estimated parameters and produced well
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FIGURE 2 Median of the joint model’s posterior distributions

of estimated green crab density at the 20 sampled sites. Colors
indicate the median green crab density (crabs/trap) estimated by
the joint model. The red lines designate previously identified
invasion fronts in 1999, 2012, and 2020. A key for site abbreviations
is included in Appendix S4: Table S2

mixed chains and low serial autocorrelation, indicating
model convergence. The median calculated critical crab
density, geritica, OF threshold at which the true-positive
probability of molecular detection equals the false-
positive probability of molecular detection (p;o = p11)
was 0.056 crabs/trap (0.010, 0.12 90%CrTI).

The joint model estimated a relatively high green crab
density in a location beyond the previously known
invasion front (Figure 2) and provided well constrained
estimates of parameter values, including the false-positive
rate (p;o = 0.022, [0.0095, 0.048 90%CrI]; Table 1). Green
crab eDNA was detected on Vashon Island, more than
60 km south of the southernmost visual observations of
the species (Figure 2). The median estimated green crab
density at the Raab’s Lagoon (RAA) site on Vashon
Island was 0.16 crabs/trap (4.0e-61, 0.61 90%CrI)
(Figure 3, Appendix S4: Table S4). The probability that
the green crab density at Raab’s Lagoon (RAA) was
greater than the median pigca, 0.056 crabs/trap, was
0.64. This relatively high density of green crab was simi-
lar to density estimates at sites in the Whatcom region,
where historically green crabs have been recovered in
traps under high trapping efforts (estimated densities
0.065-0.59 crabs/trap; Appendix S4: Table S4).

The concurrent eDNA and trap sampling meaning-
fully constrained the lower limit of eDNA sampling’s

TABLE 1
median and 90% credibility intervals (highest density interval

Parameters estimated by the joint model, with the

calculation) of the 10,000 sampling iterations

Parameter = Median estimate = 90% credibility interval
D 0.94 0.72,1.2

Vi 2.5 1.6, 3.5

P1o 0.022 0.0095, 0.048

Note: @ is the overdispersion parameter in the negative binomial
distribution of species counts (Equation 1), / is the coefficient relating
species density to true-positive molecular detection probability (Equation 2),
and py is the false-positive molecular detection probability (Equation 3).

sensitivity relative to trap sampling. At Graveyard Spit
Channel, the eDNA samples yielded no positive molecu-
lar detections, and no green crabs were trapped out of the
86 traps set during the sampling period. The estimated
median green crab density at this site was low (0.00049
crabs/trap; 2.4e-18, 0.0079 90%Crl). However, in 2020,
1369 traps were set, and three green crabs were recovered
(0.002 crabs/trap) and, in April 2021, three more crabs
were recovered at this site, indicating that it was nearly
certain that crabs were present in the channel during the
time of sampling, but not detected by eDNA sampling;
this appears to be a false-negative result.

Three sampled sites—Indian Island (IND), Jim-
mycomelately creek (JIM), and KVI Beach (KVI)—
yielded one positive molecular detection, yet their
median estimated crab densities were below pcritica, OF
the crab density at which the false-positive probability of
detection equaled the true-positive probability of detec-
tion, given the estimated crab density (Appendix S4:
Table S4). The probability that the crab densities were
greater than the median pcptica; Was 0.35, 0.017, and
0.096 for IND, JIM, and KVI, respectively. Given the
estimated crab densities at these sites, these molecular
detections were as likely to be a false-positive detection
than a true-positive detection. One sampled site, JIM,
in the Central Sound produced one positive qPCR
detection, yet the 43 traps set over the sampling period
recovered zero green crab individuals. During 2020, no
green crabs were recovered in traps, but in July 2021,
9 months after eDNA sampling, five adult green crabs
were recovered in in a neighboring channel to the site
sampled for eDNA.

Robustness assessments

The model refitting procedure using set values for the
false-positive probability p,o (p1o = 0.05-0.55) indi-
cated that some parameter estimates were sensitive to
P1o- Among the four sites with at least one positive
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FIGURE 3 (a) Posterior distributions of estimated green crab density at each of the 20 sampled sites. Red boxplots are the estimated

densities using the joint model, incorporating both trapping and eDNA information, and blue boxplots are the estimated densities using the
trap-only model, using only trapping information. The lower and upper hinges correspond to the posterior data’s first and third quartiles.
(b) Subset of sites where the joint model’s estimated median green crab density ranges between 4.4e-8 and 0.1 crabs/trap. A key for site

abbreviations is included in Appendix S4: Table S2

eDNA detection and no crabs trapped over the sam-
pling period (RAA, IND, KVI, JIM), all four u estimates
were sensitive to the value set for p;, during model
refitting (Appendix S3: Figure S3a,c). At these sites,
lower values of p,( yielded higher estimates of p, and
this effect was strongest for sites with a low trapping
effort (RAA, IND, KVI) (Appendix S3: Figure S3a,c).
All other p estimates at the remaining 16 sites were
insensitive to the set value of p,, (Appendix S3:
Figure S3d). As expected with a lower p;o and subse-
quently a more sensitive assay, lower set values of p;q
yielded lower estimates of the scaling parameter,
(Appendix S3: Figure S3b).

For the data cloning procedure, all parameter maxi-
mum likelihood estimates were within the 90% credi-
bility intervals estimated by the Bayesian model. The
median maximum likelihood estimates of u (umig)
were nearly identical to the median Bayesian estimates
of p (fBayes), although the median uy g was slightly
higher than the median pug.y.s at sites with a lower
trapping effort (Appendix S3: Figure S4). The median
maximum likelihood estimate of @ was 0.96, which
was nearly identical to the median Bayesian estimate
of @ (0.94) (Table 1). The median maximum likelihood
estimate of § was 2.3, and the median maximum likeli-
hood estimate of p,o was 0.012. Both median MLE esti-
mates of f and p,, were lower than their respective
median Bayesian parameter estimates, yet the median

MLE estimates were inside the Bayesian 90% credibility
intervals (Table 1).

The joint model’s inferences were also consistent with
parameters estimated from an occupancy modeling
framework. The site-specific replicate-level probabilities
of occupancy, pjoccupancy» Were consistent with site-
specific molecular probabilities of detection, p;joint, from
the joint model (Appendix S3: Figure S5). A linear regres-
sion between the two parameters indicated that 71.8% of
variation in p; occupancy Was explained by p;joine (F-statis-
tic: 45.9, p-value: 2.40e-6).

Quantifying uncertainty to find the value
of eDNA information

At sites with lower trapping effort, adding eDNA data nar-
rowed the credibility intervals for estimated crab density,
relative to a model using only trapping data. Moreover, the
leading edge of an invasion, such as the Central and South
Sound, often featured low densities of the invading species.
Here, the combination of eDNA and trapping data vastly
reduced the uncertainty associated with low trapping effort
in these cases (Figure 4). As the trapping effort decreased,
the marginal benefit (ACV) of eDNA data increased expo-
nentially (Figure 4), dramatically increasing the precision of
green crab density estimates at sites along the invasion front
and at sites characterized by low trapping efforts.
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FIGURE 4 Difference in the coefficient of variation (ACV) in
the posterior distributions of the estimated green crab densities FIGURE 5 Sampling effort necessary to detect a green crab

between a model using only trapping information (trap-only
model) and a model using both trapping and eDNA information
(joint model). The gray line designates the best-fit trend line,
ACV = 54 x exp(—2.94 x log[traps])

To identify the relative sensitivities of the two sam-
pling methods, we determined the sampling effort neces-
sary to detect a green crab with 90% confidence, given
the joint model’s estimated parameters. This sampling
effort was calculated for a range of simulated crab densi-
ties, from 0.056 crabs/trap (median estimated pcigica)) tO
3.0 crabs/trap. The detection sensitivity—the probability
of capturing at least one crab in one trap or the probabil-
ity of one true-positive qPCR amplification in triplicate
trials—was higher for eDNA sampling than for trap sam-
pling, suggesting that the information provided by one
water bottle is slightly greater than the information pro-
vided by one trap (Figure 5).

eDNA'’s greatest marginal benefit at low
species densities and trapping effort

Simulations further indicated that the marginal benefit of
eDNA data, measured as ACV, increased as trapping
effort decreased for all simulated densities of green crab
(Figure 6). Importantly, these information benefits
tended to be highest at true crab densities (ugy,) in the
range 0.05-0.50 crabs/trap, and the information benefit
decreased at crab densities higher and lower than this
range (Figure 6).

Both the joint and trap-only models produced accu-
rate estimates of green crab density in a diverse set of

with 90% confidence. Lines designate the type of sampling effort
(water bottles, traps)

0.5
ACV

20
1.5

1.0
0.5

0.15

1 (Crabs/trap)

0.05

3 5 10 15 30 60
Number of traps

FIGURE 6 Marginal benefit of eDNA data at each simulated
true crab density and trapping effort. The information benefit is
represented by the difference in the coefficient of variation (ACV)
in the posterior distributions of the estimated green crab densities
between a model using only trapping information (trap-only
model) and a model using both trapping and eDNA information
(joint model). Each grid cell represents the mean ACV for all
simulation scenario replicates. Both the x and y axes are presented
on a non-linear scale

simulations. For scenarios in which g, > 0, 100% of
simulation replicates yielded 90% credibility intervals
of density estimates that contained the true green crab
density, ugin. For scenarios in which pg,, = 0, no simu-
lation replicates yielded 90% credibility intervals of
density estimates that contained the true green crab
density, gsim-
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DISCUSSION

Many management and policy decisions have prominent
economic and social consequences, particularly sur-
rounding invasive or endangered species, which often
occur at low densities. Finding the leading edge of an
invasion front can correspondingly require government
agencies and others to engage in high-cost sampling that
nevertheless has little power to detect rare individuals.
As eDNA comes to the forefront as a routine sampling
technique that can ameliorate some of these difficulties,
it is important to quantify the value of this new data
stream and to adequately characterize the uncertainty
associated with all kinds of environmental sampling. By
jointly modeling eDNA and traditional (trap) data for
the invasive European green crab, we (1) estimated the
abundance of the species at its leading edge of invasion,
(2) quantified uncertainty in both detection methods
and showed the marginal information benefit of an
eDNA data stream, and (3) offered a framework for inte-
grating eDNA into existing data streams and survey
programs.

Improving interpretation of eDNA data

Our quantitative approach builds upon previous work
adapting occupancy modeling approaches to facilitate
eDNA data interpretation (Griffin et al., 2019; Lahoz-
Monfort et al., 2016; Pilliod et al., 2013; Schmidt
et al., 2013). These previous approaches suggest that
there are two classes of sites—those that are occupied
and those that are not—and crucially, that the probability
of detecting a species is constant within a given ecological
context. This assumption can be insufficient in the con-
text of eDNA surveys, in which local abundance can
induce heterogeneity in detection probability (Altwegg &
Nichols, 2019; Royle & Dorazio, 2008; Royle &
Nichols, 2003). The joint model presented here uses the
heterogeneity in molecular detection probability to esti-
mate species density, rather than occupancy, and
operates under the assumption that the probability of a
true detection increases as species density increases.

The joint model uses observations from two sampling
methods, each generated independently from a shared
underlying species density. The two data streams inform
one another: the combined likelihood borrows strength
from the sites with greater trapping effort over the sam-
pling period to infer detection biases across all locations
and to inform species density at data-limited sites. The
model also reveals the relative sensitivities of the two
sampling methods and the relative information contribu-
tions of eDNA data at varying trap sampling efforts.

In practical application, environmental factors includ-
ing flow rates, turbulence, temperature, water chemistry,
and UV light can affect the dilution, persistence, and
strength of an eDNA signal (Andruszkiewicz et al., 2017;
Barnes & Turner, 2016; Deiner & Altermatt, 2014;
Sansom & Sassoubre, 2017). Quantitatively modeling
eDNA detections and integrating traditional and new
sampling approaches help to mitigate this challenge by
capturing uncertainty in how eDNA detections arise from
true species presence and density.

To overcome challenges with parameter identifiability
typical of hierarchical models of eDNA data (Griffin
et al., 2019; Guillera-Arroita et al., 2017), the model uses a
Bayesian framework and sets plausible bounds on the
false-positive probability as prior information. Recognizing
the tendency for Bayesian priors to induce undue influ-
ence on the model’s inferences (Cressie et al., 2009; Lele &
Dennis, 2009), we conducted robustness assessments to
investigate the effect of prior assumptions. We found that
our inferences are largely robust to prior specification
(Appendix S3: Figures S3, S4); although at certain sites
with a low trapping effort, there is not enough information
in the data to limit the influence of the specified false-
positive probability prior (Appendix S3: Figure S3).

Importantly, the joint model’s results can aid appropri-
ate management responses after a molecular detection. In
management contexts, positive eDNA detections are com-
monly used to prompt non-molecular sampling for corrob-
oration (Sepulveda, Hutchins, et al., 2020), as shown in
the Great Lakes invasive carp eDNA surveillance program
(Woldt et al., 2020). However, after a positive eDNA detec-
tion, managers must decide how intense (and therefore
expensive) the management response must be, and it is
often difficult or impossible to confirm a species’ absence
with traditional methods (Morrison et al., 2007; Russell
et al., 2017). Quantifying uncertainty for any given detec-
tion method encourages agencies to explicitly set tolerable
risk levels for the presence of a target species.

The results of the joint model offer a framework for
inferring a species density threshold, pcritica;, at which
a molecular detection is as likely to be a false-positive
detection as a true-positive detection. This value pro-
vides an opportunity to investigate the probability that
an eDNA detection reflects the true presence of a spe-
cies. For example, two sites yielded one positive qPCR
detection each, yet the median estimated crab densities
were very near zero (0.0013 and 6.5e-7 crabs/trap at
JIM creek and KVI Beach, respectively). Given the
combination of molecular and trapping data in hand,
these detections are as likely to be false positives as
true positives. Further detections by either method
would change this interpretation, but the ability to
quantify uncertainty in this way is valuable.
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Quantifying the practical value of eDNA
information

Our framework offers a way to fold genetic surveys into
existing management practices, therefore moving the
contribution of eDNA data to management practices
from “potential” value to practical value. For the specific
example of the green crab assay, the marginal benefit of
eDNA data—measured as increases in the precision of
species density estimates upon the addition of eDNA
data—is highest at sites with low trapping effort, and this
information benefit increases exponentially as traditional
trapping effort decreases (Figures 4 and 6). Therefore
data-limited applications particularly stand to gain from
molecular surveys.

Simulations identified a parameter space, or a combi-
nation of true green crab density and existing trapping
effort, in which the marginal benefit of eDNA informa-
tion is highest. These simulations suggested that eDNA
sampling is most useful at low trapping efforts and a
green crab density of ~0.05-0.50 crabs/trap, a sampling
combination in which a true molecular detection is prob-
able, and a detection through baited trapping is unlikely.
Importantly, as the true green crab density fell below
~0.05 crabs/trap (for which the true detection rate [py;]
falls below the false-detection rate [p,]), the information
benefit of eDNA data decreased. Previous work faces sim-
ilar challenges in detecting green crab eDNA at low den-
sities with existing molecular assays, and suggested that a
different assay was more sensitive during green crab
spawning periods (Crane et al., 2021).

Therefore, the joint model not only indicates when
the marginal benefit of eDNA sampling is highest, but
also when marginal benefit of eDNA is negligible, which
is valuable information for allocating limited monitoring
resources. We find that eDNA sampling is unlikely to
improve management at locations with high trapping
effort or a high species density (Figures 4, 6), situations
in which managers essentially already have the informa-
tion they seek. For example, eDNA samples were col-
lected in Dungeness National Wildlife Refuge, an area
rich in marine life that contains one of the world’s
longest sand spits. The watershed in this area is also
home of the Jamestown S’Klallam Tribe, providing abun-
dant resources from its tidelands and marine waters
(Jamestown S’Klallam Tribe, 2007). The US Department
of Fish and Wildlife implements an intense removal trap-
ping procedure in the national refuge. In 2020 in Grave-
yard Spit Channel (GSC), 1369 traps were set, and three
green crabs were recovered. The combination of high
trapping effort and inferred crab densities well below
Heritical Means that eDNA sampling would be unlikely to
improve the existing survey estimates at this site.

The veracity of negative results are often of equal
importance as confirmation of positive detections, and
eDNA sampling has previously been used in species
eradication campaigns (Carim et al., 2020; Davison
et al., 2019; Larson et al., 2020). However, the sensitivity
of the assay tested here illustrates a case in which the
similar rates of detection between traditional and molec-
ular sampling mean that it is difficult to confirm a spe-
cies’ absence with either method (Morrison et al., 2007,
Russell et al., 2017).

Although costs of eDNA-based surveys tend to com-
pare favorably with those of traditional capture-based
methods (Biggs et al., 2015; Sigsgaard et al., 2015), future
work should identify the survey regime that maximizes
detection probability under a fixed budget. Previous cost-
efficiency analyses find that eDNA is less cost efficient at
low sample numbers, as costs associated with initial
investments in reagents and supplies for laboratory anal-
ysis are high (Smart et al., 2016). However, because tradi-
tional sampling requires repeat visits and more time- and
labor-intensive sampling efforts, eDNA sampling has
lower field labor and transportation costs and can
become more cost effective compared with traditional
sampling when examining a large number of sites
(Khalsa et al., 2020). Such cost comparisons are critical
when identifying the optimal allocation of survey effort
to maximize detection, and future cost-efficiency inqui-
ries should consider the role of site-specific characteris-
tics that affect the relative costs of sampling methods.

Increasing certainty at the green crab’s
invasion front

By contrast, sites with low trapping effort are likely to
benefit from the additional information that eDNA offers.
In the context of green crab, the most notable example of
eDNA data’s value at the invasion front is the estimation
of a relatively high green crab density at a site well
beyond green crab’s previously known distribution
(Figures 2 and 3; Appendix S4: Table S4). By interpreting
the pattern of eDNA signals, the joint model indicates
green crab eDNA presence with relatively high certainty
at Raab’s Lagoon (RAA) on Vashon Island, suggesting
that the local species density is perhaps low and previ-
ously undetectable using traditional monitoring methods
implemented at a low effort. We estimate the green crab
density at Raab’s Lagoon—one of the sites beyond the
previously known invasion front—to be 0.16 crabs/trap
(4.0e-61, 0.61 90%CrI). The probability that the green
crab density is greater than the median pcyca;, OF the
crab density at which the associated true probability of
detection equals the estimated false-positive probability,
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is 0.64 (Figure 2; Appendix S4: Table S4). This finding is
consistent with studies showing that sufficient eDNA
sampling applied across large geographic areas can reveal
unexpected patterns and new occurrences of species mis-
sed by traditional approaches (Mckelvey et al., 2016;
Tucker et al., 2016), and the Bayesian modeling frame-
work allows these statements of new occurrences to be
tempered by quantified wuncertainty (Hobbs &
Hooten, 2015). However, the model treats molecular
detections and trapped adults as conceptually equivalent,
with a joint estimate of species “density” in units of crabs
per trap. This is a somewhat imprecise description insofar
as molecular detections potentially include larval and
dead individuals. Depending upon management prior-
ities, detections of larval or dead individuals may
(or may not) rise to the level of importance of live
adult detections. Indeed, results of trapping at RAA
and KVI in July 2021 suggested that these molecular
detections may have been larvae and, to date, no
adults have been captured at RAA, KVI, or neighbor-
ing sites in the South Sound through trapping efforts
by the Washington Sea Grant (WSG) Crab Team,
WDFW, and partners.

False positives and false negatives

The fear of false-positive detections is often cited as the
primary hurdle for adopting eDNA approaches for spe-
cies monitoring (Jerde, 2019). However, the term “false
positive” can be misleading in the eDNA context (Darling
et al., 2021): different mechanisms contribute to false-
positive errors, and we can distinguish between errant
detection in an individual sample vs. errant detection at
an unoccupied site (Chambert et al., 2015; Darling
et al., 2021; Guillera-Arroita et al., 2017). Our model
explicitly estimates a molecular false-positive probability,
which incorporates both the probability of a false-positive
sample and the probability of a false-positive site through
information included in the parameter’s prior distribu-
tion and unambiguous presence sites with a high trap-
ping intensity. In this study, however, field negative
controls (clean water collected using the same protocol
and equipment as field samples) were not collected at all
sites, and these negative controls are critical for detecting
contamination and informing the false-positive probabil-
ity (Goldberg et al., 2016). Future work should include
separate negative controls at each stage of the eDNA
sampling process to help to identify sources of contami-
nation when it occurs and to properly model the false-
positive probability.

Notably, our false-positive probability does not
include scenarios in which we detect nonviable

organisms or larval individuals: these are true-positive
detections of eDNA present at the sampled site. In a man-
agement context, molecular detection of larvae alone
does not necessarily indicate a high probability of inva-
sion. However, with an invasive species with high larval-
dispersal potential, larval detection beyond the known
invasion front has high value for management planning
and can be used to prioritize areas for assessment and
prospecting.

False-negative detections similarly erode an assay’s
usefulness in eDNA work, as in every other sampling
method (Goldberg et al., 2016; Hunter et al., 2019). PCR
inhibition can mask even high eDNA copy numbers and
thereby profoundly affects molecular detection estimates
(Jane et al., 2015). For example, DNA extracted from tur-
bid water often contains humic acid and tannin com-
pounds, created through non-enzymatic decay of the
organic material, and these compounds can inactivate
DNA polymerase and inhibit the PCR amplification pro-
cess, reducing PCR efficiency or causing PCR failure
(Albers et al., 2013; Goldberg et al., 2016). No samples
included in this analysis were substantially inhibited, but
it remains important to test for inhibition to guard
against an inflated false-negative rate in any molecular
assay.

CONCLUSION

Given the limited resources available to State and tribal
government agencies charged with controlling invasive
species, there is significant value in identifying and
implementing optimal invasive species management strat-
egies. Applications of eDNA methods have represented
some of the most significant advances in invasive species
surveillance in the recent decade, yet uncertainty inherent
in eDNA sampling means that managers are often hesitant
to direct management actions based solely on molecular
evidence. Although previous work has identified the
potential for DNA-based methods to amplify the uncer-
tainty already associated with invasive species risk assess-
ment (Benke et al., 2007; Darling & Mahon, 2011; Sikder
et al., 2006), here we demonstrate that eDNA increases
certainty at data-limited locations, and we highlight sce-
narios under which eDNA sampling is most useful in the
context of green crab management. The value of eDNA
sampling at low species densities and data-limited areas
has largely been discussed (Crookes et al., 2020; Suarez-
Menendez et al., 2020; Villacorta-Rath et al., 2020), but
here we provide a means to formally quantify this value.
The joint model aids eDNA data interpretation and con-
tributes to a growing body of analyses providing frame-
works for inferring confidence in patterns of eDNA
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detections (Furlan et al., 2016; Guillera-Arroita et al., 2017,
Lahoz-Monfort et al., 2016). This approach also offers a
means to combine eDNA and traditional monitoring
methods to make more reliable inferences about data-
limited sites and provides reassurance to managers and
other stakeholders wary of adopting a new technology.
Whereas environmental DNA methods can support detec-
tion of invasive species at low abundances, improved statis-
tical methods to interpret patterns of environmental DNA
detections can empower informed management responses.
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