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Organisms living in mountains contend with extreme climatic conditions,
including short growing seasons and long winters with extensive snow cover.
Anthropogenic climate change is driving unprecedented, rapid warming of
montane regions across the globe, resulting in reduced winter snowpack.
Loss of snow as a thermal buffer may have serious consequences for animals
overwintering in soil, yet little is known about how variability in snowpack
acts as a selective agent in montane ecosystems. Here, we examine genomic
variation in California populations of the leaf beetle Chrysomela aeneicollis, an
emerging natural model system for understanding how organisms respond
to climate change. We used a genotype–environment association approach to
identify genomic signatures of local adaptation to microclimate in populations
from three montane regions with variable snowpack and a coastal region with
no snow. We found that both winter-associated environmental variation and
geographical distance contribute to overall genomic variation across the land-
scape. We identified non-synonymous variation in novel candidate loci
associated with cytoskeletal function, ion transport and membrane stability,
cellular processes associatedwith cold tolerance in other insects. These findings
provide intriguing evidence that variation in snowpack imposes selective
gradients in montane ecosystems.
1. Introduction
Seasonality serves as one of the strongest andmost ubiquitous sources of environ-
mental variation impacting natural systems, with distinct selective forces
operating between periods of summer growth and reproduction and overwinter-
ing survival [1,2]. For small montane ectotherms, elevated and variable air
temperatures during summertime can cause physiological stress during critical
periods of reproduction, growth and development [3–5]. As hotter, drier sum-
mers become more common, upslope shifts in montane insect species are
becoming more frequent, posing novel challenges at the limits of physiological
tolerance [6,7]. For organisms that overwinter beneath the soil, snow cover is a
key environmental factor influencing physiology and survival because snow
buffers microclimate variability [8,9]. Climate change is causing more prevalent,
intense and lengthy droughts, which in turn leads to more winters with a higher
elevation snowline and lower total snowpack [10,11]. Reductions in snowpack
may expose organisms overwintering in the soil to temperature extremes
that cause physiological stress, reducing their overwintering survival and
reproductive success at subsequent summer emergence. Recent declines in
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insect populations in montane environments documented
across the globe demonstrate the urgency in gaining a clear
understanding of how organisms cope with greater seasonal
variability in temperature and precipitation in montane eco-
systems [12–14]. Seasonal fluctuation can maintain genetic
polymorphisms within populations [15,16], and variation in
the extent andmagnitude of seasonal fluctuations can generate
spatial clines in allelic variants [17–19]. Elucidating how
past climatic conditions have structured genetic variation
and corresponding physiological responses for organisms in
these habitats will be critical for predicting their responses to
future environmental change.

Local adaptation, which occurs when resident genotypes
have a higher relative fitness in their local habitat than
genotypes originating from other habitats, is an important
mechanism by which genetic variation is maintained in hetero-
geneous environments [20–22]. The extent and persistence of
local adaptation are determined by a balance between natural
selection for alleles that confer improved reproductive success
in a particular microclimate and the homogenizing effects of
gene flow and other neutral processes [22–26]. Neutral pro-
cesses that influence patterns of genetic variation among
populations include dispersal rates, colonization history, and
population expansion and contraction, which in turn affect
levels of genetic drift [24,25]. Local adaptation may be detected
by identifying a stronger genetic variant ‘signal’ from weaker,
non-selective ‘noise’ [27,28]. Unfortunately, selective climatic
gradients, geography and migration corridors tend to covary,
which complicates quantifying the relative contribution of
selective and neutral evolutionary forces; thus, effects of iso-
lation by distance (IBD) and population structure must be
taken into account before patterns of genomic variation can
be associatedwith selective features of the environment [29–32].

In this study, we investigated relationships between micro-
climatic factors and genetic variation in the willow leaf beetle
Chrysomela aeneicollis, a well-described model species for
understanding how climate change impacts montane ecosys-
tems [18,33,34]. This insect is ideal for investigating processes
of local adaptation in a region of high topographic and seaso-
nal landscape heterogeneity [35]. During the brief summer
growing season, this univoltine beetle species mates, lays
eggs and undergoes one generation of larval development
before new adults emerge and feed before winter returns
[36]. They overwinter in the soil as freeze-tolerant adults for
eight to nine months before emergence of reproductively
mature adults [37,38].

In western North America, C. aeneicollis is found living on
willows in cool, moist habitats separated by regions of arid or
Mediterranean climates, resulting in highly fragmented distri-
bution with little connectivity among populations [39,40].
In California, this species inhabits regions with distinct micro-
climate and seasonal characteristics: along high-elevation
(2700–3400 m) streams and bogs in the Sierra Nevada (SN), in
isolated montane populations on the edge of the Great Basin,
and in low-elevation riparian habitats along the northern
California coast. Within the SN, populations experience stress-
fully warm and cold temperatures throughout the year and
their distribution is affected by seasonality and elevation,
with populations contracting upslope and declining in abun-
dance during droughts and growing in size and expanding to
lower elevations after wet, snowy winters [4,33,36,38,41,42].
Despite these fluctuations in population size, SN populations
have maintained high levels of heterozygosity at protein
coding genes and other loci and show no deviation from
Hardy–Weinberg expectations with respect to expected
versus observed genotype frequencies [42,43], suggesting that
they are sufficiently large to avoid bottlenecks and effects of
inbreeding.Montane populations showevidence of substantial,
stable genetic differentiation along a 60 km latitudinal gradient,
from the South Fork of the Kings River in the south to Rock
Creek in the north, with especially high divergence at mito-
chondrial loci and the metabolic enzyme locus phosphoglucose
isomerase, Pgi [3,18,42,43]. Prior laboratory and field studies
have also shown that effects of temperature on performance
and fitness components vary among individuals with different
nuclear and mitochondrial variants [33,35,42,44,45]. While
extensive studies support the hypothesis that variation at meta-
bolic loci such as Pgi and the mitochondrion reflect local
adaptation [3,18,44,46], we lack information about how vari-
ation throughout the genome reflects the complex interaction
of neutral and adaptive processes across the beetle’s range.

Here, we address this gap by evaluating relationships
between genomic variation and environmental conditions
in locations where willow beetle populations occur in four
distinct ecoregions of California [47]. We quantified differen-
tiation at nuclear loci among populations in three montane
regions in eastern California and populations in an isolated
coastal area; this sampling design covers all known regions
within California where this species is currently known to
occur [39,40]. We identified selective microclimatic gradients
that contribute to spatial patterns of potentially adaptive
genomic variation across the landscape, then used this
information to predict functions of newly identified genes
that vary along microclimatic gradients to examine how
genomic differentiation among these regions may contribute
to local adaptation.
2. Results
(a) Sequencing and marker filtering
Illumina sequencing generated 5.06 billion paired-end reads
from 175 individuals in 12 populations (table 1), of which
4.05 billion total reads (80.1%) passed initial quality filters
(per sample: mean = 23.1 million, s.d. = 7.9 million). The joint
genotype calling workflow identified 12 million hard-filtered
biallelic single nucleotide polymorphisms (SNPs) (electronic
supplementarymaterial, tables S1 and S2).We then used a con-
servative SNP filtering approach based on minor allele
frequency (MAF), heterozygosity and inbreeding coefficient,
resulting in 22 323 SNPs across all individuals and 12 popu-
lations. These SNPs were distributed evenly across the
nuclear genome (electronic supplementary material, table
S1). Filtering thresholds that contributed substantially to the
reduced set of analysed SNPs were those that removed SNPs
with a MAF < 0.01 (electronic supplementary material, table
S2b) and that removed loci with low quality readswithin popu-
lations (electronic supplementary material, table S2c).

(b) Microclimate simulation
The NicheMapR microclimate model simulated 24 variables
for the 12 beetle populations that represent air, soil and
snow conditions beetles experience throughout their life cycle
(electronic supplementary material, table S3). Simulated
environmental variables demonstrated high sensitivity to the



Table 1. Localities and sample sizes for population genomic studies.

ecoregion
population name latitude longitude elevation (m) N sites N beetles (total) year(s)a

Sierra Nevada

Tuttle Creek (TC) 36.53779 −118.21530 3012 1 10 2019

Taboose Pass (TP) 36.96824 −118.43419 3321 3 18 2009

Big Pine Creek (BP) 37.12863 −118.48704 3142 11 28 1998–2014

Baker Creek (BK) 37.16780 −118.47143 3120 3 18 1999

S Bishop Creek (BC) 37.16601 −118.55171 3098 14 38 2004–2014

Tyee Lakes (TL) 37.18567 −118.57565 3191 4 9 2014

N Bishop Creek (NF) 37.21760 −118.64757 3131 6 12 2003–2014

Pine Creek (PC) 37.34442 −118.72861 3057 2 4 2013

Rock Creek (RC) 37.45561 −118.74034 3030 5 10 2013–2014

Central Basin

Davis Creek (DC) 37.78392 −118.23650 2895 1 12 2003

Eastern Cascades

Fitzhugh Creek (FC) 41.35091 −120.29662 1968 3 11 2020

Coast Range

Gualala River (GR) 38.74906 −123.51919 12 1 8 2016
aWe sampled newly emerged overwintered adults, either from the most recent population expansion (2013–2014), or the most recent observation of
overwintered beetles at that site. Further details of sampling design are described in electronic supplementary material, appendix 1.1.
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shade input parameter in the model (electronic supplementary
material, figure S1), but relative multivariate environmen-
tal distances between populations were consistent between
minimum and maximum shade conditions (electronic sup-
plementary material, figure S2). Simulated microclimatic data
under minimum shade conditions were more concordant with
available empirical measurement based on RMSE (electronic
supplementary material, table S4), so downstream analyses
were therefore conducted using simulated environmental
variables under 10% shade.

(c) Population genomic differentiation across California
landscape

The first two principal components on population-level
minor allele frequencies explained 55.8% of total genomic
variation (figure 1b). Eastern Cascades and Coast Range (CR)
ecoregions exhibited the greatest genomic divergence among
populations, and population genomic variation in the SN
and Central Basin ecoregions followed a latitudinal gradient
(figure 1; electronic supplementary material, table S5). SNP fil-
tering thresholds used in analyses did not meaningfully
influence estimates of population structure compared to more
relaxed filter thresholds (electronic supplementary material,
figures S3–S5).

A population genetic structure analysis was used to esti-
mate proportions of individual genomes originating from
ancestral gene pools based on the five populations determined
by selecting a value of K that minimized cross entropy (elec-
tronic supplementary material, figure S6). Individuals in the
SN ecoregion show a strong pattern of genetic differentiation
with latitude (figure 1). Based on proportions of estimated
ancestral coefficients, individuals in the southern drainage
Tuttle Creek (TC) are genetically distinct and belong to one
ancestral population. Individuals in Taboose Pass (TP) are
mixed, sharing ancestry with neighbours in TC to the south,
Big Pine (BP) and Baker (BK) Creek to the north. Individuals
in South Bishop Creek (BC) and Tyee Lakes (TL) share ancestry
with both southern (BP, BK) and northern (NF, PC, RC) popu-
lations, which in turn share ancestry with those from the Great
Basin (DC). Individuals collected in Eastern Cascades and CR
ecoregions were genetically distinct from each other and from
the SN–Great Basin complex (figure 1).

Analysis of pairwise Fst values among population pairs
revealed that populations in the montane Eastern Cascades
region were more similar to montane populations in the SN
and Great Basin than they were to CR populations, despite
similar geographical distances separating each region
(figure 2). When populations were classified by habitat type
(coastal or mountain), Fst values for ‘coast versus mountain’
population pairs were fourfold greater (LSM = 0.43 ± 0.02)
than those for ‘mountain versus mountain’ population pairs
(LSM = 0.11 ± 0.01, F1,63 = 197.4, p < 0.001; figure 2). The over-
all relationship between geographical distance and Fst was
similar within the two types of population pairs and was
consistent with ‘IBD’ genetic differentiation (F1,63 = 24.5,
p < 0.001; figure 2). Together, these results suggest that IBD
and isolation by environment (IBE) (coastal versus montane)
both shape genomic differentiation, and differences in
environmental conditions appear to strongly influence
genetic composition of C. aeneicollis populations.

(d) Associations between environmental and genomic
variation

Partial redundancy analysis (pRDA)—The pRDA made it poss-
ible to identify specific genetic polymorphisms that were
associatedwith environmental differences among populations.
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Figure 1. Genetic differentiation and structure of Chrysomela aeneicollis populations across California. (a) Map of study populations. Abbreviation in parentheses
refers to population ecoregion (SN, Sierra Nevada; CB, Central Basin; EC, Eastern Cascades; CR, Coast Range). Inset map features the sampled populations located in
the Sierra Nevada and Central Basin ecoregions. Populations in the Sierra Nevada ecoregion are presented using a blue colour gradient and are ordered based by
latitude, south to north representing increasing latitude. (b) PCA ordination highlighting genomic differentiation among populations based on the minor allele
frequencies. (c) Stacked barplots for each individual (N = 175 total) indicate estimated ancestry coefficients, representing the posterior probability that an individual
originates from K = 5 ancestral gene pools. Colours below the stacked barplot indicate each individual’s a priori population designations, as shown in (a,b). Two-
letter population designations are described in table 1.
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Figure 2. Genomic differentiation as a function of geographical distance and
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pairwise genetic distance (Fst). The black lines indicate the fitted values
from the ANCOVA model, and points are colour coded by the categorical inde-
pendent variable used in the ANCOVA model.
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Among all California populations, the pRDAwas globally sig-
nificant (F2,7 = 2.18, p = 0.001; figure 3), and the constraining
environmental matrix explained 17.1% of variation in genomic
data, while the conditioning spatial matrix explained 19.0% of
genomic variation. The forward selection procedure identified
a significant positive spatial variable (MEM1), which was
retained as conditioning variable in pRDA. The forward selec-
tion procedure identified annual air temperature range at
1.75 m above ground level (annual Tmax− Tmin) andmaximum
daily snowfall as significant environmental predictors of
genomic variation (figure 3; annual air temperature range
F1,7 = 2.28, p = 0.001; maximum daily snowfall F1,7 = 2.08,
p = 0.001). The first and second RDA axes also explained sub-
stantial proportions of genomic variation (RDA1 = 18.7%,
F1,7= 2.32, p = 0.014; RDA2 = 16.6% F1,7= 2.05, p = 0.022).
Candidate SNPs were identified based on high correlation
with temperature- and snow-related environmental variables
(r > |0.65|) and z-score values of loadings of loci in ordination
space (z-scores ± 2.1, two-tailed p = 0.036). Based on these cri-
teria, 107 SNPs were identified as candidate loci (figure 3).
Sixty-eight SNPs were related to annual air temperature
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range, 37 to maximum daily snowfall, and two were related
to both temperature and snowfall (electronic supplemen-
tary material, table S6). When the coastal Gualala River
population was excluded, the pRDA was globally significant
(F1,8 = 2.04, p = 0.021; electronic supplementary material,
figure S7), and with MEM1 as the conditioning variable, the
forward selection procedure identified only maximum daily
snowfall as a significant predictor of genomic variation.
Using the above candidate loci criteria, 116 SNPs were related
to maximum snowfall (electronic supplementary material,
table S7).

Latent factor mixed model (LFMM)—The LFMM represents
a second approach to identify SNPs related to environmental
variability while accounting for overall population genetic
structure. With all California populations, a LFMM was run
with five estimated ancestry coefficients as latent factors to
test single-locus relationships with annual air temperature
range and maximum daily snowfall (ancestry coefficients
shown in figure 1). A large proportion of identified poly-
morphisms (19.2%; 4289 SNPs) were associated with annual
air temperature range, and 7.2% (1603 SNPs) were associated
with maximum daily snowfall (figure 4). Using the LFMM
excluding the coastal Gualala River population and four
ancestral populations, 1471 SNPs (6.6% total) were associated
with maximum snowfall (electronic supplementary material,
table S7 and figure S8).
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(e) SNP and protein functional annotations
To reduce probability of false positive associations and narrow
the search for candidate polymorphisms, we focused on
SNPs identified by both pRDA and LFMM, and we assessed
associations across coastal and montane populations and
then again using only montane populations (electronic sup-
plementary material, tables S6 and S7). In analyses with all
populations, most SNPs correlated with annual air tempera-
ture range in pRDA were also identified using LFMM (67
of 70). A slightly lower proportion of SNPs associated with
maximum daily snowfall based on pRDAwere also identified
by LFMM (26 of 39; electronic supplementary material,
table S6). In analyses with only montane populations, most
SNPs correlated with maximum daily snowfall based on
pRDA were also identified by LFMM (79 of 116), and 18
SNPs identified in the pRDA with only montane populations
were also identified in analyses with coastal and montane
populations (electronic supplementary material, table S9).

Analyses of all populations and only montane populations
identified three non-synonymous SNPs associated with maxi-
mum daily snowfall found in genes coding for proteins
involved in cell structure and movement (inverted formin-2
and microtubule-actin cross-linking factor). Analyses includ-
ing all populations or only montane populations identified
five non-synonymous SNPs associated with daily snowfall
that are found in genes coding for proteins involved in ion
transport or cellular membrane activity (table 2; electronic sup-
plementary material, tables S8–S12). Three non-synonymous
SNPs associated with air temperature range across all popu-
lations were found in genes coding for proteins involved
in intracellular signalling and energetics (cytochrome p450,
phospholipid transfer protein; table 2).
3. Discussion
Detecting accurate signals of local adaptation in the genome
requires linking observed genetic patterns to underlying
selective features of the environment while accounting for
associations imposed by neutral processes. Here, we demon-
strate that populations of the willow leaf beetle C. aeneicollis
across California are differentiated across the nuclear
genome, and we provide strong evidence that snow serves as
a prominent selective gradient and driver of local adap-
tation across their geographical range. We show that both
large-scale variation in snowfall across the California land-
scape and small-scale variation in snowfall within montane
locations are associated with adaptive genetic variation.
Specifically, we provide evidence that variation in maximum
daily snowfall is linked to non-synonymous polymorphisms
in genes associated with cytoskeletal motility, ion transport,
and membrane structure and function, highlighting the poten-
tial role of adaptive protein modifications that could enhance
insect cold tolerance in cold snowy regions.

(a) Spatial patterns of genetic divergence in Chrysomela
aeneicollis

Results of this study reveal that populations of the willow leaf
beetle C. aeneicollis living in different regions of California are
genetically differentiated across loci in the nuclear genome.
Three of four ecoregions sampled show substantial levels
of genetic divergence among them, such that North Coast
populations are distinct from those in the Eastern Cascades
ecoregion, and both of those populations are distinct from
populations in the SN and Great Basin (figure 1). Within east-
ern California, populations from northern drainages of the
eastern SN are less genetically isolated from populations
sampled in the neighbouring White Mountains than those
found in southern drainages of the SN. Furthermore, consist-
ent with previous studies, populations within the SN show
relatively high levels of genetic divergence given their rela-
tively close geographical proximity (figure 1) [3,42,43].
Patterns of genetic differentiation separating populations in
different ecoregions suggest that geographical and seasonal
environmental variation present a major selective pressure
on alleles in the nuclear genome and that genes related
to thriving under different local environmental conditions
contribute to local adaptation among populations of
C. aeneicollis (figure 2).

The strong pattern of geographical differentiation of geno-
mic variation across California was illustrated for the first
time in the present study, but it is consistent with findings of
Dellicour et al. [40]. The earlier study found that C. aeneicollis
populations in western North America (Montana, coastal
Oregon, Colorado and California) were strongly differentiated
at mitochondrial and nuclear genetic markers, suggesting that
geographical isolation among these regions predates recent
fluctuations in the extent of glaciation over the past 50 000
years. Isolation of populations at mitochondrial loci was greater
than nuclear genes, but there was overall agreement among
loci that differentiation among geographical regions was
substantial, which would contribute to conditions favouring
local adaptation [40]. To date, this study provides the best
picture of signatures of adaptation to seasonal variation in
this wide-ranging insect.

(b) Maximum daily snowfall variation contributes to
adaptive genetic variation

Identifying climatic variables that act as drivers of spatially
varying selection will be critical for predicting evolutionary
responses to climate change and environmental disturbance [48].
Among all simulated microclimate conditions that represent
air, soil and snow conditions throughout the year, we found
that maximum daily snowfall explains a significant portion
of variation in genomic data, after controlling for spatial
autocorrelation and population history (figure 3; electronic
supplementary material, figure S7). This association is ident-
ified both across the California landscape, where climatic
conditions differ greatly between coastal and montane popu-
lations, as well as within montane populations, where
differences in climatic conditions are more subtle. Compari-
sons made within montane populations suggest that this
snowfall gradient may characterize spatially varying selective
pressures related to winter cold exposure within mountain
ecoregions (electronic supplementary material, figure S9).
Eco-physiological models for C. aeneicollis indicate that
the relationship between elevation and cold exposure in soil
is strongly nonlinear, with cold exposure peaking at mid-
elevation montane populations that are not buffered by
persistent snow cover [38]. Since snow decouples the relation-
ship between air and soil temperatures, variation in snow
cover reflects variation in cold exposure in the soil at a given
elevation. Without the thermal buffer that snow provides
for organisms overwintering in soil, cold microclimate



Table 2. Candidate proteins that vary with microclimate. Proteins were identified using BlastP alignment using predicted amino acid sequence; associated NCBI
accession number is noted for sequence with highest homology to reference taxa; populations included in analysis (montane and coastal, montane only or both)
are indicated.

gene ID
amino acid
variants protein

reference sequence
(taxa,a % identity)
accession number gene ontology (GO) termsb

air temperature range

montane and coastal

05_00.257 Val/Ile nuclear valosin-containing protein-

like

Ld: 99, 71 ATP binding and hydrolysis2

XP_023023254.1 ribosome binding2, biogenesis3

telomerase activity3

06_05.960 Asn/His cytochrome P450 315a1,

mitochondrial

Ld: 100, 58 monooxygenase, oxidoreductase

XP_023020072.1 activity2; ecdysone biosynthesis3

15_02.330 Leu/Phe phospholipid transfer protein Ag: 100, 75 membrane1 nucleotidyl trans. activity2

XP_018561647.1 phosphorylation, signal transduction3

maximum daily snowfall

montane and coastal

02_12.369 Ser/Gly transmembrane protein 131 Ld: 94, 66 membrane1

XP_023015832.1

14_11.590 Val/Ala testinc Tg: 100, 63 zinc ion binding2

XP_008194458.1

montane only

02_16.309 Ser/Pro long-chain-fatty-acid CoA ligase Ld: 99, 76

XP_023012248.1

ligase activity2, lipid metabolic process3,

neuron cellular homeostasis3

03_01.420 Val/Leu protein pigeon (PION)c Ld: 100, 73

XP_023019414.1

regulation of membrane protein (amyloid-beta)

formation3

03_04.184 Asn/Asp ankyrin repeat; IBR domain-

containing proteinc
Ag: 98, 81

XP_018576173.1

metal ion binding2,

ubiquitin-protein transferase activity2,

protein ubiquitination3

04_00.113 Ile/Val zinc transporter ZIP-1 like isoformc Ld: 100, 67

XP_023015018.1

metal ion transmembrane transporter activity2,3

18_04.151 Asn/Thr ribosomal protein Ld: 100, 68 ribosome1, translation3

XP_023030475.1

montane and coastal + montane only

10_13.168 Glu/Aspγ inverted formin-2 Ag: 98, 63 actin cytoskeleton organization2

Pro/Alaγ XP_023310886.1

20_03.324 Gln/His microtubule-actin cross-linking factor Dv: 45, 69 membrane1, cytoskeleton1

XP_028131989.1 Ca2+ ion binding2, microtubule binding2;
cytoskeleton organization3

aReference taxa: Leptinotarsa decemlineata (Ld: Colorado potato beetle), Anoplophora glabripennis (Ag: Asian long-horned beetle), Tribolium castaneum (Tc: red
flour beetle), Diabrotica virgifera (Dv: corn rootworm beetle).
bGOTerm categories: cellular component1, molecular function2, biological process3.
cSNP only detected with pRDA;γSNP locations directly adjacent (electronic supplementary material, table S6).
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temperatures can drop below a species-specific cold tolerance
threshold, which can result in mortality or sublethal cold inju-
ries [49,50]. This result highlights the importance of snow cover
variation as a key factor in maintaining this variation and
driving selection on genes associated with cold tolerance and
stress in winter.

Prior work in SN populations of C. aeneicollis shows that
air temperature varies between genetically differentiated
populations and shows evidence of physiological adaptation
to different thermal regimes [44]. However, in the present
study, the effect of ‘annual air temperature range’ (figure 3)
is largely driven by climatic conditions in the CR. This
broad thermal selective gradient covaries with neutral
patterns of population structure, which complicates distinc-
tions between neutral and selected loci [24]; thus, the high
detection rates observed in the LFMM in the present study
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could also be due to residual, unaccounted population
structure (figure 4).

(c) Putative mechanisms of local adaptation to snow
cover mirror mechanisms of cold tolerance

Genes containing non-synonymous SNPs associated with
variation in snowfall encode proteins with functions related
to ion binding, actin and cytoskeleton binding and organiz-
ation, and membrane components; protein identifications
were assigned with a high level of confidence, as all homolo-
gous proteins are present in other beetle species (table 2).
These protein functions align with previously identified mech-
anisms of cold tolerance and acclimation in both insects
and plants [51–54]. Primary cellular challenges associated
with deep and prolonged cold exposure or freezing include
loss of ion and water homeostasis and depolymerization of
cytoskeletal components (e.g. actin and tubulin), which can
impair ion transport function, cause loss of cell junction integ-
rity, and exacerbate disturbances in membrane integrity
caused by paracellular leaks of water and ions [55–58]. Cold-
acclimated insects are better able to maintain ion and water
balance at low temperatures compared to warm-acclimated
insects [59], due to cellular structural modifications that
enhance cytoskeletal stability, thus protecting ionoregulatory
tissues (e.g. Malpighian tubules in insects) from chilling
injury and loss of transport function [51]. Cold-acclimated
insects also differentially regulate cytoskeletal gene expression,
with cold acclimation inducing upregulation of actin-
associated genes or enzymes that promote membrane and
cytoskeletal remodelling [52,60,61]. Because polymorphisms
associated with variation in snowfall may relate to protein
modifications that enhance cytoskeletal and membrane stab-
ility in the cold, putative mechanisms underlying local
adaptation to snow are related to primary cellular mechanisms
of cold acclimation and tolerance. These results provide geno-
mic evidence that variation in snowfall imposes a selective
gradient in exposure to cold stress, supporting the theory
that snow modulates cold stress and exposure for insects that
overwinter in the soil [38].

(d) Tandem genotype–environment association
approach identifies signatures of local adaptation

In detecting genomic signatures of local adaptation,
genotype–environment associations (GEAs) identified by
various methods will depend strongly on demographic and
sampling scenarios [24,29,31,62]. Simulations conducted by
[23] find that multivariate ordination methods like pRDA
produce uniformly low false positive rates (0–2%), whereas
LFMM produced high false positive rates under low dispersal
scenarios [23]. Chrysomela aeneicollis individuals have low
levels of dispersal, with individuals often spending most of
their life on a single host plant [41,63].

Nonetheless, correcting for population structure in pRDA
can result in low power to detect true associations [64], and
recent simulation modelling indicates that LFMM provides
the best compromise between detection power and error
rates in situations with complex hierarchical neutral genetic
structure [65]. Herbivorous insects can have a subdivided
population structure that reflects the distribution of their
plant hosts [66,67], and previous work found hierarchical,
subdivided genetic structure among patches and willows
within a patch [43]. The application of these two GEA
methods highlights the trade-off between conservative and
liberal approaches in detecting a true adaptive signal, yet
applying these methods in combination can therefore yield
increased confidence in true positive detections of local adap-
tation. Future work should investigate the relationship
between non-clinal allele frequency patterns and environ-
mental gradients, which can evolve under multivariate
environments and can lead to inaccurate inferences using
GEA approaches [64].
(e) Limitations
A limitation of this study is sampling bias toward popu-
lations in the SN ecoregion relative to the other three
eco-regions included in this study (figure 1), which may
bias genetic–environmental relationships and relative contri-
butions of IBE and distance (figure 2). Replicated sampling
along environmental gradients increases confidence in true
positive detections of GEAs [31], yet the beetle’s fragmented
distribution in California limits replication across climatic
conditions. Another potential limitation is that temporal cov-
erage of sampling was limited to 1 year in all but the SN
ecoregions (table 1), so that allele frequencies in these popu-
lations may be influenced by environmental conditions in the
collection year. Prior studies suggest that genetic variation
among SN, CB and CR populations has remained relatively
stable since we last sampled and analysed them [40]. We
therefore expect that patterns reported here reflect adapta-
tion to long-term environmental conditions due to the
geographical isolation among populations.

Additionally, stringent SNP filter thresholds were applied
to ensure quality genotypes within each population, resulting
in a relatively modest set of polymorphisms (N = 22 323
SNPs). While these thresholds did not alter overall estimates
of population structure (electronic supplementary material,
figures S3–S5), candidate SNPs associated with environ-
mental gradients in this study likely represent a subset of
loci involved in local adaptation.
4. Conclusion
Many montane species live on the periphery of both suitable
habitat and physiological tolerance, which contributes to
the unique sensitivity of montane populations to climate
change. Even small environmental changes may result in
large implications for survival and reproductive success
[33,68,69]. The willow leaf beetle has emerged as a natural
model for analysing the relationship between adaptive
genetic variation and environmental change [33,42–44]. By
analysing all known Californian C. aeneicollis populations
across the nuclear genome, this study represents the broad-
est investigation of adaptive genetic variation in the species
to date and provides a path forward for understanding the
evolutionary significance of variation at genes associated
with response to environmental stress. Future work should
identify regions where genetic–environmental relationships
will be most likely disrupted by climate change and
reduced snowfall, which will be critical for land manage-
ment decisions and gene conservation in vulnerable
populations [70].
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5. Methods
(a) Study populations and sampling design
Ecoregions were identified following United States Geological
Survey (USGS) designations [47]. Beetle populations from the
SN ecoregion were surveyed at winter snowmelt (May–June)
from 1996 to 2016, following methods detailed in [33] (electronic
supplementary material, appendix 1.1). In all, 175 individuals
from 54 sampling locations were included and assigned a priori
to 12 populations (table 1 and figure 1) based on previous
work [40,42,43]. These represent all known populations in Cali-
fornia, and they experience a wide range of seasonality, snow
cover and air temperature variation, especially between montane
and coastal regions (electronic supplementary material, table S3).
Though allele frequencies can fluctuate within a beetle popu-
lation across years [18], the magnitude of these fluctuations
is relatively small compared to the magnitude of genetic
divergence among regions [3,40,42].

(b) DNA library preparation and processing of genomic
sequencing data

Genomic DNA was extracted from individual beetles using
NucleoMag Bacteria DNA Isolation kit (Macherey-Nagel,
Düren, Germany), and whole-genome libraries were prepared
following the plexWell library preparation protocol by the
CCGP MiniCore. Paired-end sequencing (2 × 150 bp) was per-
formed on an Illumina HiSeq4000 platform at UC Berkeley’s
QB3 Genomics Core Facility (Berkeley, CA, USA). Nextera
adapter sequences and low-quality bases (base quality <15,
sliding window 4 bp) were removed from each read using Trim-
momatic v. 0.39 [71]. Reads were aligned to a C. aeneicollis
reference genome [46] using the Burrows-Wheeler Aligner
(BWA-MEM) algorithm [72]. Joint genotyping was performed
on all samples using Genome Analysis Toolkit (GATK)
v. 4.2.6.0 functions HaplotypeCaller and GenotypeGVCFs [73].
Variant data were filtered to include only biallelic SNPs, and
SNPs were hard-filtered using GATK best-practice recommen-
dations [74] (electronic supplementary material, table S2a).
SNPs were removed if MAF across all individuals was less
than 0.01 or if heterozygote frequencies deviated greatly from
Hardy–Weinberg expectations (e.g. excess heterozygosity or
inbreeding coefficient greater than ±0.5) (electronic supplemen-
tary material, table S2b). Finally, SNPs were retained if 70% of
all samples and 70% of samples within each population
showed a read depth between three and 30 and a genotype qual-
ity greater than 20 (electronic supplementary material, table S2c)
[75]. After filtering, principal components analysis (PCA) was
performed on Hellinger-transformed population-level minor
allele frequencies [75,76]. Because variant filter thresholds influ-
ence estimates of population structure [77,78], we assessed
sensitivity of genetic differentiation to filter threshold levels.

(c) Microclimate variable simulation
To obtain spatially explicit environmental variables representing
local microclimate conditions across the life cycle, microclimate
simulations were conducted for the 12 beetle populations using
the biophysical modelling package NicheMapR [79]. The model
computes microclimatic conditions at a defined distance above
ground, given local habitat properties and weather conditions.
The microclimate model was run using historical gridded
weather data from the GRIDMET daily weather database
with 5 km × 5 km resolution [80]. The mid-latitude, -longitude
and -elevation of all demes within each population were used
as input in the model (table 1; electronic supplementary material,
table S2). The microclimate model was run in soil moisture and
snow modes under both minimum (10%) and maximum shade
(90%) conditions for 1989–2020. Simulated variables included
air temperature and humidity at 1.75 m above the ground,
snow-related variables and soil-related variables. To characterize
mean environmental conditions, daily microclimate variables
were averaged over 30 simulated years (electronic supplemen-
tary material, table S3). We evaluated sensitivity of simulated
microclimate variables to input microclimate model parameters
by calculating RMSE between simulated outputs and empirically
derived microclimate data from available weather stations (Cali-
fornia Department of Water Resources, CDEC). Air temperature
and snow depth data from CDEC were available for weather
stations within 1 km of mid-elevation sites in Rock Creek, BP
Creek, South Bishop Creek and North Bishop Creek.
(d) Population genomic differentiation across the
California landscape

Population structure from SNP genotypic data was assessed by
estimating proportions of individual genomes originating from
ancestral gene pools. A range of estimated ancestral gene pools
(K = 1–10) were tested using a sparse non-negative matrix factor-
ization algorithm using the function ‘snmf’ in the R package LEA
v. 3.6.0 [81,82] (K = 3–7 shown in electronic supplementary
material, figure S11). The value of K that minimized cross-
entropy and best explained genotypic data was five [83] (elec-
tronic supplementary material, figure S6) and this value was
used for subsequent analysis. The ‘snmf’ function was also
used to estimate individual ancestry coefficients. Five replicates
were run using the best estimate of K, and individual ancestry
coefficients were extracted from the replicate with the lowest
cross-entropy.

To quantify contributions of geographical and environmental
distances to patterns of genetic differentiation, we assessed IBD
and IBE for all population pairs using an analysis of covariance
(ANCOVA). The ANCOVA tested whether the means of pairwise
Fst between populations were equal across habitat type, while
controlling geographical distance. Unbiased pairwise Fst using
minor allele frequencies of all populations were calculated using
the R package BEDASSLE v. 1.6 [84,85]. Pairwise geographical
distance in kilometres was calculated using the R package fields
v. 13.3 [86]. Population pairs were identified as ‘coast versusmoun-
tain’ and ‘mountain versus mountain’ to describe habitat type of
populations, as this categorical descriptor represents most environ-
mental variation among populations (electronic supplementary
material, table S3). Using the R package rstatix v. 0.7.1, ANCOVA
was conducted with pair-wise Fst values as dependent variable,
binary environmental descriptor as categorical independent vari-
able, and geographical distance as a covariate. Least-squares
means were calculated for habitat types using the R package
emmeans v. 1.8.3.
(e) Genotype–environment association tests to identify
signatures of local adaptation

Signatures of local adaptation to climate were investigated using
two GEA methods, pRDA [29,87,88] and LFMM [30], which con-
trol for signals generated by neutral processes through separate
mechanisms. Both GEA analyses were performed on two sets
of populations: (i) all populations and (ii) all montane popu-
lations excluding the coastal (Gualala River) population. pRDA
was conducted at the population level since the resolution of
environmental data did not include environmental variation
within a population. To account for IBD, we conducted a spatial
eigenfunction analysis that produced a conditioning matrix in
the pRDA using distance-based Moran’s eigenvector maps (elec-
tronic supplementary material, appendix 1.2) [29]. All simulated
environmental variables were scaled and centred to produce the
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environmental matrix, and forward selection was used to select
significant environmental predictors, with significant dbMEMs
as explanatory conditioning matrix and Hellinger-transformed
SNP minor allele frequencies as response matrix. The final
pRDAwas run with significant (alpha < 0.05) environmental pre-
dictors using the R package vegan v. 2.6-2 [89]. Outlier loci on
constrained ordination axes were determined based on loadings
of each locus in ordination space [29,75].

We then conducted a LFMM and documented overlap
of detections with results from pRDA [24,29,48,65]. Neutral popu-
lation structure due to shared demographic history or background
genetic variation is introduced through unobserved, latent factors
[30]. This method used individual-based genotypic data, which
assessed the effect of a priori designated populations used pre-
viously in pRDA. The ‘lfmm’ function in the LEA package was
implemented using individual-level genotypic data (22 323
SNPs) as response matrix, forward-selected environmental vari-
ables used in pRDA as environmental predictors, and the best
estimate of K (estimated ancestral gene pools) as number
of latent factors. More detailed GEA methods are provided in
electronic supplementary material, appendix 1.3.
:20230630
( f ) SNP and protein functional annotations
We identified genes containing candidate SNPs andpredicted SNP
coding effects with an interval forest approach using the program
SnpEff v. 5.1 [90] and Caen 1.0 annotated genome [46]. SNPs were
annotated based on genomic location, and coding effects were pre-
dicted (electronic supplementary material, appendix 1.4). To
assign a putative protein name, protein sequences were aligned
to NCBI’s protein database using BlastP (table 2; electronic sup-
plementary material, tables S8–S11). Gene ontology (GO) terms
were assigned to candidate genes using the functional annotation
Web server database Protein ANNotation with Z-scoRE
(PANNZER2 [91]).
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