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Abstract
1.	 Environmental DNA (eDNA) sampling is increasingly used in surveys of species 

distribution as a potentially sensitive and efficient monitoring method. Yet access 
to modelling tools designed specifically for interpreting this new data type lags 
behind its ubiquity. While occupancy modelling software has dominated the 
analytical landscape for eDNA data analysis of single species, this type of model 
may not always be the most appropriate. The rate of eDNA detection often 
corresponds to species density, rather than just occupancy, and researchers often 
have access to observations from non-genetic sampling methods at the same 
sites.

2.	 To provide users access to a modelling framework designed to maximize the use of 
all available data, we developed an R package, eDNAjoint. The package provides 
an easy-to-use interface for fitting a ‘joint’ model that integrates data from paired 
or semi-paired eDNA and traditional surveys in a Bayesian framework. The model 
can be used to estimate parameters like the probability of a false positive eDNA 
detection and mean catch rate at a site, and the package allows access to multiple 
model variations and Bayesian prior customization. Additional functionality can 
be used for model selection, summarising posteriors and comparing the relative 
sensitivities of the two survey methods.

3.	 We demonstrate the use of eDNAjoint by fitting a variation of the model with 
site-level covariates that scale the sensitivity of eDNA sampling relative to 
traditional sampling. The example workflow uses binary eDNA and seine count 
data for the endangered tidewater goby (Eucyclogobius newberryi) from a study by 
Schmelzle and Kinziger (2016). This use case includes a prior sensitivity analysis 
and an evaluation of the relationship between detection rates and environmental 
variables.

4.	 eDNAjoint has the potential to greatly increase the range of users who will 
be able to rigorously analyse eDNA and traditional survey data in a Bayesian 
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2  |    KELLER and KELLY

1  |  INTRODUC TION

The availability of environmental DNA (eDNA) data has proliferated 
since its first application in assessing the species distribution of a 
vertebrate nearly 20 years ago (Ficetola et al., 2008). The potential 
for rapid and cost-effective surveys of common, endangered (Bonfil 
et al., 2021), rare (Pfleger et al., 2016) and invasive species (Larson 
et al., 2020) has introduced the extraction and identification of DNA 
from environmental samples as a routine monitoring technique. 
Additionally, the emergence of private industry with dedicated 
eDNA services (i.e. Smith-Root and Jonah Ventures) has increased 
the accessibility of eDNA sampling gear and laboratory analytical 
expertise.

Software tools designed specifically for interpreting eDNA data, 
however, have not kept pace with the broad availability of this new 
data source. Robust approaches linking environmental DNA to 
quantitative estimates of species abundance and distribution have 
grown in peer-reviewed literature (Guri et al., 2024; Levi et al., 2019; 
Shelton et  al.,  2022; Tillotson et  al.,  2018; Yates et  al.,  2021), yet 
these methods are confined to academic communities with the tech-
nical expertise necessary to develop bespoke models. Importantly, 
institutional inertia due to challenges in data interpretation has lim-
ited the adoption of this novel data source in management agencies' 
decision-making routines (Lee et al., 2024).

The application of occupancy models to eDNA detection–nonde-
tection data has dominated the eDNA single-species analytical land-
scape (Burian et al., 2021; Erickson et al., 2017; Pilliod et al., 2013; 
Strickland & Roberts, 2019). Originally developed to account for im-
perfect detection in visual, auditory and capture surveys of animals 
(MacKenzie et al., 2002), this hierarchical model has proved to be a 
useful framework for understanding eDNA-based distribution data. 
Since uncertainty around false-positive detections presents a hurdle 
to adopting eDNA-based approaches (Jerde, 2021), the occupancy 
model has been extended to account for false-positive detections 
at multiple scales in the context of eDNA analysis (Guillera-Arroita 
et  al.,  2017; Lahoz-Monfort et  al.,  2015). Responding to the oc-
cupancy model's utility in interpreting eDNA data, recent soft-
ware advances include the occuFP feature of unmarked that fits 
occupancy models when false positive detections occur (Fiske & 
Chandler, 2011), as well as eDNAoccupancy that fits Bayesian multi-
scale occupancy models (Dorazio & Erickson, 2018).

Occupancy models, however, may not always be the most ap-
propriate analytical method for interpreting eDNA detection–non-
detection data. Variation in species abundance can induce variation 

in detection probability with genetic methods, providing an oppor-
tunity to estimate species density, rather than occupancy, from 
repeated observations of the presence or absence of genetic ma-
terial (Royle & Nichols, 2003). Additionally, observations from non-
genetic datasets, hereafter referred to as ‘traditional observations’, 
often spatially and temporally overlap with some or all eDNA ob-
servations (Guillera-Arroita et al., 2017; Schmelzle & Kinziger, 2016). 
Occupancy modelling with eDNA data can also underestimate spe-
cies occupancy and overestimate detection probability, yet this bias 
can be ameliorated by including traditional observations as a proxy 
for abundance (Randall et al., 2023). Existing software has not yet fa-
cilitated the integration of eDNA observations with measurements 
made by other means.

The R package eDNAjoint builds upon and makes accessible a 
model developed in Keller et  al.  (2022) that sets up an analytical 
framework for integrating eDNA and traditional data into manage-
ment processes (Keller et al., 2022). By jointly modelling repeated 
observations from both survey methods, the two data streams can 
inform each other to quantify uncertainty in both methods, under-
stand their relative detection sensitivities and estimate parameters 
including mean (expected) species catch rate and the probability of 
a false positive eDNA detection. As a software tool designed to fa-
cilitate the integration of multiple available data sources, eDNAjoint 
may bring eDNA analytical capabilities to a broader researcher and 
practitioner base.

2  |  MODEL DESCRIPTION

The package eDNAjoint is intended for use with replicated, paired or 
semi-paired eDNA (binary, detection–nondetection) and traditional 
(count or continuous) observations at multiple sites across the 
landscape (Figure 1).

The package runs a Bayesian model that integrates these two 
data streams to jointly estimate parameters like the false positive 
probability of eDNA detection and expected catch rate at a site (i.e. 
expected number of individuals per traditional sample). Optional 
model variations allow inclusion of site-level covariates that scale 
the sensitivity of eDNA sampling relative to traditional sampling, 
as well as the estimation of gear scaling coefficients when multiple 
traditional gear types are used. Additional functions in the package 
facilitate the interpretation of model fits.

Below is a representation of the model used in eDNAjoint in-
cluding all model variations. Note that inclusion of gear scaling 

framework, understand if and how eDNA can improve monitoring practices, and 
gain confidence in the interpretability of eDNA data.

K E Y W O R D S
Bayesian methods, environmental DNA, false positive probability, software, species 
distribution, statistics

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70000, W
iley O

nline L
ibrary on [28/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3KELLER and KELLY

coefficients, qk (Equation 2), and the regression with site-level co-
variates, � (Equation 4), are optional in implementation with eDNA-
joint. A reduced version of the joint model without these variations 
is also described in Keller et al. (2022).

The model can accommodate both discrete count and continuous 
data from traditional surveys. Traditional observation, Y, of a species at 
site, i, in survey sample, j, of gear type, k, is drawn from either

1.	 a negative binomial distribution with mean (expected) species 
catch rate, �i,k, and an overdispersion parameter, � (Equation 1.1)

2.	 a Poisson distribution with mean (expected) species catch rate, �i,k 
(Equation 1.2).

3.	 a gamma distribution with shape parameter, �mu and rate 
parameter, �mu. The mean (expected) species catch rate, �i,k is 
equal to �mu

�mu
 (Equation 1.3),

Gear scaling coefficients, qk, scale the catch rates of multiple gear 
types relative to gear type 1 (Equation 2),

The probability of a true positive eDNA detection, p11, at site i, 
is a function of mean (expected) species catch rate, �i,1 and scaling 
coefficient � i (Equation 3),

The scaling coefficient � i relates the sensitivity of eDNA sam-
pling to the mean (expected) species catch rate and is a function of 
site-level covariate coefficients, �n and site-level covariate data, Ai,n 
(Equation 4). Both qk and � i are dimensionless,

The total probability of eDNA detection at site i, pi, is the 
sum of the probability of a true positive eDNA detection at site 
i, p11,i, and the probability of a false positive eDNA detection, p10 
(Equation 5),

The number of positive PCR eDNA detections, K, out of the num-
ber of trials, N, in eDNA water sample m at site i is drawn from a 
binomial distribution, with a probability of success on a single trial, 
pi (Equation 6),

Non-uniform prior distributions are included in the model for pa-
rameters p10, �n and � (if a negative binomial distribution is used to 
describe the traditional survey observations, Equation 1.2),

(1.1)Yi,j,k ∼ NegativeBinomial
(
�i,k,�

)
,

(1.2)Yi,j,k ∼ Poisson
(
�i,k

)
,

(1.3)Yi,j,k ∼ Gamma
(
�mu,i,k, �mu,i,k

)
.

(2)�i,k = qk × �i,1.

(3)p11,i =
�i,1

�i,1 + e� i
.

(4)� i = AT

i,n
× �n.

(5)pi = p11,i + p10.

(6)Ki,m ∼ Binomial
(
Ni,m, pi

)
.

(7)p10 ∼ Beta(�, �),

(8)� ∼ Gamma(�, �),

F I G U R E  1  Conceptual diagram of joint model with (a) paired and (b) semi-paired data.
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4  |    KELLER and KELLY

Hyperparameter values for p10 and � prior distributions can be 
specified by the user in function arguments (see below).

3  |  IMPLEMENTATION IN R

The models that can be run with eDNAjoint use Bayesian inference for 
parameter estimation. The models are specified in the probabilistic 
programming language Stan, which uses Hamiltonian Monte Carlo to 
obtain posterior simulations (Carpenter et al., 2017). The workflow 
of the package includes: (1) preparing data, (2) fitting the model and 
(3) interpreting model results. The following user guide includes 
installation instructions, a high-level overview of the functions, and 
example code: https://​ednaj​oint.​netli​fy.​app/​.

3.1  |  Preparing the data

eDNAjoint is suitable for paired or semi-paired traditional and 
detection–nondetection eDNA survey data collected at multiple 
sites across the landscape for a single species. Environmental DNA 
and traditional data can both be collected at all sites (i.e. paired), 
or eDNA and traditional data can both be collected at some sites, 
while eDNA data is only collected at other sites (i.e. semi-paired). 
Both eDNA and traditional survey data should have a hierarchical 
structure:
•	 Sites (primary sample units) within a study area.
•	 eDNA and traditional samples (secondary sample units) collected 

from each site.
•	 eDNA subsamples (replicate observations) taken from each eDNA 

sample.

Users will input their data as a named list of matrices, where the 
matrix structure is designed to be similar to the structure of input 

data in the occupancy modelling package unmarked. All implemen-
tations of the model should contain the following named matrices 
in the list:

•	 pcr_n: matrix of dimensions i x m, representing the total number 
of positive PCR detections obtained for each site (row) and eDNA 
secondary sample (column).

•	 pcr_k: matrix of dimensions i x m, representing the total number of 
eDNA subsamples (replicate observations) collected at each site 
(row) in each eDNA secondary sample (column).

•	 count: matrix of dimensions i x j, representing the total number of 
animal individuals collected in each traditional secondary sample 
(column) at each site (row).

The following matrices can optionally be included in the data list:

•	 site_cov: matrix of dimensions i x n, representing values of site-
level covariates (column) at each site (row) that scale the relation-
ship between eDNA and traditional sampling sensitivity.

•	 count_type: matrix of dimensions i x j, representing the gear type 
of each traditional secondary sample (column) at each site (row).

3.2  |  Fitting the model

The main functionality in eDNAjoint is the use of joint_model() that 
will fit the model to data. Along with the data as an input argument, 
the user can specify the desired model variation with additional 
inputs that describe the distribution used for the data-generating 
process of traditional samples (Equations  1.1–1.3), site-level co-
variates included in the model and the presence of multiple tra-
ditional gear types (Table 1). Additional arguments allow the user 
to specify parameters that control the MCMC sampling process.

The user can also specify the values of the hyperparameters 
used in the beta distribution for the p10 prior (Equations 5 and 7), as 
well as the gamma distribution for the � prior used for overdispersed 

(9)�n ∼ Normal(0, 10).

Model variation Description joint_model()argument

Distribution 
representing 
data-generating 
process of 
traditional 
survey data

Poisson Count data, 
mean = variance

family = “poisson”

Negative binomial Count data, mean ≠ 
variance

family = “negbin”

Gamma Continuous data family = “gamma”

Site-level covariates Includes covariates 
that scale the relative 
detection sensitivities 
of eDNA and traditional 
sampling

cov = c(“cov1”, “cov2”, 
“cov3”)

Multiple traditional gear types Includes gear scaling 
coefficients that scale 
the relative detection 
sensitivities of multiple 
traditional gear types

q = TRUE

TA B L E  1  Model variation options and 
arguments used to implement variations 
in joint_model().

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70000, W
iley O

nline L
ibrary on [28/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ednajoint.netlify.app/


    |  5KELLER and KELLY

count observations (Equations 1.2 and 2). The default specification 
for the p10 prior is beta(�p10 = 1, �p10 = 20) (mean: 0.048, var: 0.045), 
and the default specification for the � prior is gamma(shape = 0.25, 
rate = 0.25) (mean: 1, var: 4). These default hyperparameter values 
for both prior distributions are relatively uninformative. For exam-
ple, the p10 prior hyperparameter values represent an expectation 
that the probability of a false positive eDNA detection is likely less 
than 0.2: P

(
p10 < 0.2| 𝛼p10 , 𝛽p10 = 0.99

)
. More information about 

these prior distributions can be found in Appendix S1. The impact 
of these prior choices on inference can be evaluated through a prior 
sensitivity analysis, as detailed below, in Appendix  S2, and in the 
user guide.

Using these inputs, joint_model() bundles the data into a for-
mat suitable for Stan and passes the data to the appropriate pre-
compiled Stan model. Stan's MCMC sampler is then invoked via the 
rstan package (Stan Development Team,  2024), and the resulting 
model fit is an object of class stanFit.

3.3  |  Interpreting model results

Additional functions in eDNAjoint facilitate interpretation of fit-
ted models. joint_select() is a wrapper function of methods in the 
loo package that can be used for model selection using leave-one-
out cross validation of a list of model fits (Vehtari et al., 2024). Stan 
model outputs will return information for all parameters and gener-
ated quantities in the model formulation, so joint_summarize() is a 
wrapper function of rstan's summary() that summarizes the posterior 
distributions of only parameters present in the model description for 
easier interpretation (Table 2).

As the species mean catch rate, �, decreases, the probability of 
a true positive eDNA detection will ultimately decrease below the 
probability of a false positive eDNA detection. The function mu_crit-
ical() calculates the mean catch rate where the probability of a true 
positive and false positive eDNA detection are equal, �critical. This 

threshold effectively represents the species density at which eDNA 
detections become unreliable.

eDNAjoint allows users to compare the relative sensitivities of 
the two survey methods. The function detection_calculate() cal-
culates the number of survey units necessary to detect species 
presence, and if site-level covariates are included in the model, de-
tection_calculate() can be used to predict how covariate values scale 
the sensitivity of the two methods. The function detection_plot() 
creates visualisations of the sampling methods' relative ability to de-
tect species presence.

All the models fit using eDNAjoint are of the stanfit class and can 
be analysed and manipulated with functions in the rstan package, in 
addition to the functions outlined above.

4  |  A SSUMPTIONS AND LIMITATIONS

The models in eDNAjoint are formulated in a Bayesian framework, 
so users must have some knowledge of how to form a prior distribu-
tion and understand its influence on inference (Lemoine, 2019), as 
well as understand how to diagnose and mitigate MCMC problems 
such as lack of convergence (Kéry & Royle, 2020). To facilitate this, 
joint_summarize() in the eDNAjoint package is a wrapper function of 
rstan's summary() that provides convergence diagnostics such as R̂ 
statistic and effective sample size (Stan Development Team, 2024; 
Vehtari et al., 2021), while filtering only parameters present in the 
model description and would be interpretable to the user (Table 2). 
Additionally, users can assess model convergence using diagnostics 
available in the shinystan package (Stan Development Team, 2017). 
More tips on MCMC troubleshooting and visualization can be found 
in the eDNAjoint user guide: https://​ednaj​oint.​netli​fy.​app/​.

Importantly, users will need to make decisions about eDNA 
and traditional observations considered ‘paired’. Sample collec-
tion may not be identical in time and space, so users will need 
to determine a reasonable spatial and temporal window of 

Symbol Name Description

�i,k mu Vector of mean (expected) catch rate at site, i. If 
multiple traditional gear types are used, mu is an array 
of mean (expected) catch rate at site, i, with gear type, 
k

p10 p10 Probability of false positive eDNA detection

qk q Vector of gear scaling coefficients for traditional gear 
type, k

�n alpha Vector of regression coefficients for site-level 
covariates that scale the sensitivity of eDNA sampling 
relative to traditional sampling

� i beta Parameter that scales the site-specific sensitivity of 
eDNA relative to traditional sampling. � is a vector of 
length, i, and a function of �n. If site-level covariates 
are not used, � i are all equal to �1

� phi Overdispersion parameter in negative binomial 
distribution, if used

TA B L E  2  Parameters included in the 
joint model, including symbols, names and 
descriptions.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70000, W
iley O

nline L
ibrary on [28/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ednajoint.netlify.app/


6  |    KELLER and KELLY

observation overlap. The package is also likely not suitable for 
datasets where the species is present in high abundance across 
the landscape. The model uses eDNA binary detection–nonde-
tection data, and there is a density threshold where detection 
saturates, therefore reducing heterogeneity in eDNA detection 
required to resolve eDNA's sensitivity. Inclusion of sites where 
the species is absent or below the true detection threshold by 
both survey methods may also be necessary for estimating the 
false positive probability of eDNA detection. Additionally, eD-
NAjoint could be used in conjunction with the package artemis, 
which provides a framework for defining qPCR detection–nonde-
tection by rigorously accounting for qPCR censorship around Ct 
value thresholds (Espe et al., 2022).

Users of eDNAjoint are also limited to using only the available 
model variations and cannot further customize model structure. 
The models in the package simplify the data-generating process 
relative to other eDNA model formulations that have more com-
plex representations of the eDNA data-generating processes (Guri 
et  al.,  2024) and/or explicitly represent eDNA spatial patterns 
(Shelton et al., 2022). Further extensions of this package could ac-
count for spatial or temporal autocorrelation among eDNA and tra-
ditional observations, make use of DNA copy number rather than 
binary detection–nondetection or distinguish the effects of false 
positives caused by PCR-related errors or by contamination in the 
field or in the laboratory (Guillera-Arroita et al., 2017).

5  |  eDNAjoint  USE C A SE

We illustrate the functionality of the package with an example 
workflow using a case study with the endangered tidewater goby 
(Eucyclogobius newberryi). We exemplify how including site-level 
covariate data when fitting the model can be useful for understanding 
the detection probabilities of the two survey methods. Examples of 
other use cases, including the implementation of the joint model with 
multiple traditional gear types and semi-paired data, are provided in 
the user guide: https://​ednaj​oint.​netli​fy.​app/​.

The data used in this example come from a study by Schmelzle 
and Kinziger (2016), where eDNA samples were collected at 39 sites, 
along with paired traditional seine sampling for endangered tidewa-
ter gobies in California (Schmelzle & Kinziger, 2016). Environmental 
data were collected at each site, including salinity and average time 
to filter eDNA water samples.

We first fit three candidate models to the data with the function 
joint_model(): (1) a null model with no covariates, (2) a model with sa-
linity as a site-level covariate and (3) a model with salinity and eDNA 
water sample filter time as site-level covariates (Appendix  S2). All 
models used a Poisson distribution to describe the data-generating 
process for traditional seine data. We then compared the predictive 
accuracy of candidate models using leave-one-out cross-validation 
with the function joint_select(). Accuracy was measured using the 
expected log pointwise predictive density (ELPD) relative to the top-
ranked model (ΔELPD; Vehtari et al., 2017). Model 3 had the highest 

predictive accuracy in the model set (model 2: ΔELPD = −31.9; model 
1: ΔELPD = −34.7).

Recognizing the potential influence of prior distribution param-
eterization on posterior inference, we then conducted a prior sensi-
tivity analysis for the probability of false positive eDNA detection, 
p10 (Appendix S2). Using the covariate set associated with the high-
est predictive accuracy, we fit the model with multiple prior param-
eterizations, and we found that the posterior of p10 was relatively 
insensitive to the prior distribution, suggesting that posterior infer-
ence is driven by the data rather than prior choice (Figure 2).

We then summarized the posterior distributions of the prob-
ability of a false positive eDNA detection, p10, and the regres-
sion coefficients for site-level covariates, alpha (Table 3). The sign 
of the coefficients indicates that the probability of true positive 
eDNA detection increases as salinity increases and decreases as 
the filter time of water samples (i.e. turbidity) increases. Using 
the posterior samples in the model fit object, we calculated the 

F I G U R E  2  Results of prior sensitivity analysis for p10, 
probability of false positive eDNA detection of endangered 
tidewater gobies. (a) Prior distributions with varying shape 
parameters of beta distribution (red: (1, 30); blue: (1, 20); yellow: (1, 
10)). (b) Posterior samples for p10 with varying prior distributions 
(red: (1, 30); blue: (1, 20); yellow: (1, 10)). Code for sensitivity 
analysis can be found in Appendix S2.
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    |  7KELLER and KELLY

Parameter Description Mean 95% credibility interval

p10 Probability of a false positive eDNA 
detection

0.003 0.001, 0.007

�1 Intercept in site-level covariate 
regression that scale eDNA sample 
sensitivity relative to traditional 
sample sensitivity

0.543 0.346, 0.734

�2 eDNA filter time coefficient for site-
level covariate regression that scale 
eDNA sample sensitivity relative to 
traditional sample sensitivity

1.021 0.792, 1.249

�3 Salinity coefficient for site-level 
covariate regression that scale 
eDNA sample sensitivity relative to 
traditional sample sensitivity

−0.351 −0.555, −0.144

TA B L E  3  Summaries of posterior 
samples of parameters in the model fit 
with endangered tidewater goby data.

F I G U R E  3  Probability of a true positive eDNA detection, p11, calculated at a mean (expected) catch rate of endangered tidewater gobies, 
�, of 0.1. Calculations were made for (a) a range of site-level eDNA sample filter time values, with other site-level covariates held constant, 
and (b) a range of site-level salinity values, with other site-level covariates held constant. Covariate values are normalized and represent z-
scores on the scale of the original covariate data. Solid line indicates the value of p11 calculated at the mean value of posterior samples, and 
grey band indicates the 95% credibility interval. Code for calculations can be found in Appendix S3.

F I G U R E  4  Number of traditional and 
eDNA survey units necessary to detect 
endangered tidewater goby presence 
with 85%, 90% and 95% probability at a 
range of mean (expected) catch rates, �. 
Calculations are made with the eDNAjoint 
function detection_calculate() using (a) 
mean covariate values and (b) eDNA 
sample filter time one z-score above the 
mean, with all other covariate values held 
constant. Code for calculations can be 
found in Appendix S3.
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probability of a true positive eDNA detection, p11, as a function 
of covariate values, while holding the mean (expected) catch rate, 
�, constant (Figure 3).

Finally, to make the relative detection sensitivities of eDNA 
and seine sampling methods more concrete, we used detection_cal-
culate() to determine the number of survey units of each method 
necessary to detect species presence with a defined probability 
(Figure 4). These calculations were made at the mean covariate val-
ues, as well as at sites where the time to filter eDNA water samples is 
one z-score above the mean. This analysis demonstrated that eDNA 
is on average more sensitive than seine samples (Figure 4a), but be-
comes less sensitive than seine samples at turbid sites where the 
time to filter water samples is high (Figure 4b).
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